
Acceleration of Spectral Domain Phase Microscopy
for Optical Coherence Tomography

Brian Frost and Xuanyi Liao
Electrical Engineering
Columbia University

Email: bf2458@columbia.edu, xl2875@columbia.edu

Abstract—Spectral domain optical coherence tomography (SD-
OCT) is an imaging modality which is used within biomedical
research. SD-OCT allows for depth imaging of samples, and
can be used in conjunction with a technique known as spec-
tral domain phase microscopy (SDPM) to measure vibrations
with sub-nanometer sensitivity. SDPM and OCT can measure
vibrations at a depth into a sample, which has made it a
useful tool in measuring vibrations within the cochlea in vivo.
SDPM requires a series of SD-OCT measurements to be taken
at a location over a long period of time at a relatively high
sampling rate to achieve a high signal-to-noise ratio (SNR).
This incurs a large data burden which can cause processing to
dominate the experimentation time. We have used the NVIDIA
CUDA language to parallelize the processing of these large SD-
OCT data sets, achieving very large speed-ups in critical time-
consuming portions of the processing pipeline. We have tested
this parallel method on in vivo data, and have validated it against
an established MATLAB-based serial processing algorithm.

I. INTRODUCTION

Our goal is to use the NVIDIA CUDA language to par-
allelize the processing of large SD-OCT data sets to obtain
vibration information through SDPM, incurring a large speed-
up over the currently used serial algorithms. In this introduc-
tion, we will expose the mechanisms of SD-OCT, SDPM and
in doing so, the processing pipeline which we are looking to
accelerate.

A. Spectral Domain Optical Coherence Tomography

Optical coherence tomography (OCT) was initially im-
plemented through what is known as “time domain OCT”
(TD-OCT), and while these machines are no longer in use,
they provide an easier way through which to understand the
mechanisms of OCT. Figure 1 shows the schematic of a TD-
OCT system.

The light source used is a low-coherence light source, and
the optical system architecture is that of a Michelson-Morley
interferometer (see [1]). As the reference mirror scans, the
optical path difference between the reference arm and the
sample arm of light changes. When these optical path length
differences are within a coherence length of one another,
interference fringes will be seen at the detector. If the sample
is made up of multiple reflectors at varying depths, then
interference fringes will appear at multiple reference mirror
distances and a reflectivity profile of the sample can be built.

Mathematically, if the input signal has electric field ampli-
tude given by E0(x), the reference and sample signal differ

by some optical path length difference only, and thus at the
detector a field with amplitude proportional to E0(x + τs) +
E0(x + τr) is seen. As the reference varies, so too does τ ,
and the detector integrates the intensity (proportional to the
square of the electric field). That is to say the detected signal
is proportional to∫ L

0

(E0(x+ τs) + E0(x+ τr))
2 dτr.

Expanding this square and distributing the integral, we get
two fixed field intensities of the form

∫
E0, and one term

proportional to

f(x) =

∫ L

0

E0(x+ τs)E0(x+ τr) dτr. (1)

The information we desire in the A-Scan is encoded in
this term, which is an autocorrelation of the input signal.
The true desired term – the electric field magnitude, and thus
reflectivity, in the sample arm as a function of displacement
– requires a deconvolution of this autocorrelation with the
background signal.

In short, OCT uses the fringe visibility profile of a sample
to determine the reflectivity profile of a substance in the di-
mension of depth into a sample. In TD-OCT, a single scanning
period of the reference mirror gives a one-dimensional line of
data into the sample known as an A-Scan. Here, the resolution
is largely determined by the coherence length of the lght
source. To gain two- or three-dimensional images, A-Scans
are taken at a number of points along the sample and then
displayed alongside one another.

SD-OCT removes the necessity for a scanning mirror, but
uses the same Michelson-Morley architecture. Figure 2 shows
an SD-OCT system schematic. There are only a few differ-
ences – the reference mirror does not scan, and the detector
has been replaced by a diffraction grating and a spectrometer.
This system is able to avoid the use of a scanning mirror by
obtaining the fringe visibility profile indirectly.

As stated above, the information required to form an A-
Scan is in the autocorrelation function shown in Equation 1.
The Wiener-Khinchin theorem states that the power spectrum,
or the intensity in frequency, is related to the autocorrelation
by the Fourier transform. That is to say, should we collect the
power spectrum, we can then compute the autocorrelation to
obtain our A-Scan (see [1]).



The diffraction grating or prism separates our superposition
signal into its wavelength components (i.e. it’s frequency
components), and the spectrometer measures the intensity of
the light at each frequency. Thus, we can instantaneously
measure something akin to the power spectrum and compute
the autocorrelation and subsequent deconvolution to gain our
reflectivity profile.

However, this is not quite the power spectrum, so the post-
processing is not so simple as “taking a Fourier transform”.
The reflectivity profile we desire is in space, and the Fourier
transform pair of space is spatial frequency or wavenumber,
not wavelength. However, wavenumber and wavelength space
are directly related by the relation k = 2π/λ, where k is the
wavenumber is λ is the wavelength.

Furthermore, we receive a wavelength-domain signal for
the entire superposition signal. We know that we are actually
not interested in the “background” component of this signal,
much like in the TD-OCT where we are not interested in the
unchanging intensity of the reference signal. We must subtract
this out at the beginning of our processing pipeline.

The benefits of SD-OCT are clear – not having to make
move a scanning mirror mechanically to take a single mea-
surement yields a faster, more stable method of arriving at the
same result. However, more processing is required to achieve
the reflectivity profile. Fourier transforms are well-understood,
well-optimized objects, but for very large data sets they still
take non-negligible time. Similarly, for large data sets, the
transformation from wavenumber to wavelength space takes
non-negligible time.

B. Spectral Domain Phase Microscopy

A-Scans can be captured in SD-OCT as fast as the spec-
trometer can be clocked, which can vary by machine (in our
case, 100 kHz) – this speed is known as the linerate. SD-OCT
systems have far faster linerates than TD-OCT systems, as they
are able to capture entire A-Scans in one instance. This high
linerate lends itself to vibration measurements, as for a system
with a linerate fs, Nyquist’s theorem states that vibrations up
to fs/2 can be measured.

We must consider the limitations of these vibration mea-
surements, however – a naı̈ve method would require large
enough vibrations within the dimension of the A-scan that
the reflectivity profile would change by more than the sys-
tem’s resolution. This resolution, determined by the coherence
length, is not usually under 1 µm, and vibrations within the
cochlea are on the order of nanometers.

SDPM allows for displacement measurements at super-
resolution levels, with sensitivity below one nanometer, by
using the phase of the A-Scan rather than the magnitude.
In SD-OCT, we retrieve the reflectivity profile through a
Fourier transform of the power spectrum as described above.
The magnitude of this Fourier transform in particular is
what gives the A-Scan obtained through TD-OCT, by the
Wiener-Khinchin theorem. However, the phase of this Fourier
transform, for sub-pixel structures, encodes the position within
a given pixel at which the structure lies. That is, should an

Fig. 1. A schematic of a time domain OCT system imaging a sample
containing a number of evenly spaced reflectors.

Fig. 2. A schematic of a spectral domain OCT system imaging a sample
containing a number of evenly spaced reflectors.

object be smaller than is necessary to resolve with the OCT
system, its displacement within the pixel it falls in can be
tracked through its phase in time.

For measurements in which nanometer-scale vibrations are
occurring, the magnitude of the A-Scan will not change
whatsoever, but the phase at vibrating points will be directly
proportional to the displacement. In fact,

x(t) =
φ(t)λ

4πn
, (2)

where x is displacement, phi is phase, λ is the center wave-
length of the light source and n is the index of refraction.
This, note, is computed per pixel.

A derivation of this fact, as well as a more comprehensive
treatment of OCT can be found in [2].



II. DATA CHARACTERISTICS

It is important to have an understanding of the form of the
data we are processing. In this section we will describe the
devices used to create the data we are working with, as well
as the behavior of the structure we are imaging.

A. OCT System

We use a Thorlabs Telesto SD-OCT system with center
wavelength 1,310 nm. The spectrometer is 2,048 pixels, and
the data corresponding to each A-Scan is given as an integer
intensity detected at each pixel (i.e. at each wavelength). The
system has a maximum linerate of 100 kHz, and is clocked by
a Tucker-Davis Technologies analog-to-digital system (TDT)
at 97,656.25 Hz. This strange linerate is a feature of the TDT
system. The pixel size in depth is about 2.2 µm, but the
resolution of the system is far larger – about 11 µm.

B. Anatomy

We take data in vivo from anesthetized gerbils. Figure 3
shows a cross-section of the cochlea – the main structure of
the inner ear. The cochlea spirals about from its widest point,
the base, to its narrowest point, the apex. We take A-Scans
through the round window membrane – a relatively transparent
membrane in the basal region of the cochlea. Through this
round window, we wish to see the hearing organ, or the organ
of Corti (OOC), as it vibrates with respect to sound stimulus.

Figure 4 shows both a two-dimensional and one-
dimensional scan acquired from a gerbil with our OCT system.
The two-dimensional scan is referred to as a B-Scan, and
is formed by taking a number of A-Scans and displaying
them side-by-side. Using this B-Scan, we are able to find the
structures of interest, and determine a line of interest through
which to take an A-Scan. Such an A-Scan is shown in this
same figure. Peaks in the A-Scan correspond to anatomical
structures, and they are usually the points we which to measure
vibration at.

C. Data Collection

We stimulate the gerbil ear using a sound stimulus which is
the superposition of multiple tones. We collect A-Scans at one
position in the basal region of the gerbil’s cochlea. The cochlea
encodes frequency spatially, in that regions of the cochlea
vibrate more in response to certain frequencies than others.
The region we view responds most at a “best frequency” of
about 22 kHz, and our stimuli have components between about
1 kHz and 40 kHz. These all fall below the Nyquist rate of
our system, which is about 50 kHz.

We present this sound stimulus and record A-scans at the
linerate determined by the TDT. We then fetch this data from
the memory onboard the OCT system, in the form of a RAW
file. This is a binary file, stored as an array of 16-bit unsigned
integers. Every 2,048 consecutive integers is one A-Scan. The
first 324 A-Scans are what are called “background scans” –
they are scans in which only the reference arm intensity is
measured. We fetch the data using a simple C++ program

written using a library supplied by Thorlabs known as the
“Spectral Radar Software Development Kit”.

We repeat this process using the same stimulus at several
volumes. The data we use in this experiment used a 40-
frequency stimulus played for about 5 seconds at each of
50, 60, 70 and 80 decibel sound pressure levels (dB SPL).
Note that each amplitude corresponds to its own raw file. The
nmber of recordings taken is chosen to be a power of 2, so
524,288 recordings are taken rather than the slightly smaller
required number for exactly 10 seconds of data. We also must
note that the first and last several scans taken of the sample
are inherently noisier than the rest, due to initial mechanical
transients in mirror motion. Due to this, we actually take 2,048
extra scans and ignore the first and last 1,024 scans in the data
set.

So for each sound pressure level, we have 324 background
scans, 524,288 scans of interest and 2048 noisy scans we do
not use, constituting 526,660 scans total. Each scan consists
of 2,048 2-byte integer, meaning each RAW file slightly more
than 2 GB. The 16-bit integers are a representation of the
power received at each pixel in the line camera on the Telesto
system. The Thorlabs Telesto manual states that these values
are off by a constant factor of 550 from the actual power
received for hardware-specific reasons. Thus, the true received
power is the input multiplied pointwise by 550.

III. METHODS

To understand the regions of the problem which can be
parallelized, we must first understand the serial pipeline re-
quired to obtain the desired data from the RAW input. In
this section, we present the serial pipeline, an analysis of the
parallelizability of each step, and methods by which each step
is tested for optimal parallel performance.

A. The Pipeline

1) Loading Data into RAM: Although uneventful, the load-
ing of the RAW file from disk to RAM is a major bottleneck
for the performance of the processing – on the computer
hosting the OCT system, loading in data can take about 5-25
seconds per RAW file. While in the serial algorithm, this does
not dominate the computation time, in the parallel algorithm
we hope that this is the lengthiest step.

Although mathematically uninteresting, the scaling by 550
must also happen here. Scaling by 550 requires the use of
larger integers (32-bit), as this multiplication pushes some
inputs above the 16-bit limit causing integer overflow. Thus,
recasting more so than multiplying does take a bit of time,
and requires 4 GB of RAM in total.

2) Background Fitting: The first 324 scan contain the back-
ground. We first average these signals pointwise arithmetically
to obtain a single “average background” vector. This average
background plays two important roles in processing: it must
be subtracted from the information-carrying vectors in the
matrix before they are further processed, and it also must be
deconvolved from the autocorrelation function in the spatial
domain.



Fig. 3. A cross-sectional schematic of the cochlea, wherein the black arrow on
the bottom right gives an estimate of our view through the round window of a
basal turn of the cochlea. OCC is organ of Corti complex, meaning the Organ
of Corti along with the basilar membrane. TM is tectorial membrane (which
we do not see in images), RL is reticular lamina, BM is basilar membrane
and OHC is outer hair cells.

For the former, we are simply performing pointwise subtrac-
tion in the time domain. For the latter, we can divide while
in the spectral domain rather than deconvolve in the spatial
domain. To do this, it is desirable that our signal is smooth, so
we must fit the averaged background to some smooth function.

As it has been determined experimentally to work, we
choose to fit our averaged background to a 9th order poly-
nomial, and then normalize it so that its highest value is 1.
We call this signal the “smooth” background.

3) Window Determination: Whenever a Fourier transform
is taken of a signal which has no natural interpretation as
being extended periodically (such as our data), we should
apply a window other than the naturally implied rectangular
window so that the transform-domain representation does not
have artificially inflated high-frequency artifacts. We choose a
Hanning window, which is pre-computed and simply loaded
into memory from a text file at the beginning of the program.

As the background must also be deconvolved from the
signal in space, we can combine the Hanning windowing and
background deconvolution by building first one “superwin-
dow”. This window would be determined by the pointwise
division of the Hanning window by the smoothed background
in the spectral domain. Then, when it comes time to window
the signal, we can window it with the superwindow to perform

Fig. 4. On the right, a B-Scan or two-dimensional OCT image of the cochlea
taken in vivo. At the top is the round window membrane, through which we
view the inner ear. Towards the middle is the organ of Corti, the hearing
organ, wherein we are interested in vibrations. The zoomed in OCT image
is compared directly to known anatomy of the inner ear – BM is basilar
membrane, OHC is outer hair cells. The line through the center corresponds
to the A-Scan or line scan position. We take A-Scans here in time, and the
magnitude of such an A-Scan is shown on the right. Peaks in the A-Scan
magnitude correspond to the known structures of the ear.

complete both the windowing and deconvolution tasks at once.
4) Background Subtraction: Each scan must have the av-

eraged background (not smooth background) subtracted from
it. This is simply a vector subtraction, but performed over
500,000 times.

5) Superwindowing: Each scan is windowed by the super-
window, which is simply a pointwise multiplication of each
scan by the precomputed 2,048-long superwindow vector.

6) Resampling: The data in the wavelength domain must
be resampled into the wavenumber domain. This is a bit
non-trivial, as evenly spaced wavelengths do not correspond
to evenly spaced wavenumbers. Thus, this resampling also
requires an interpolation.

A linear algebraic approach simplifies this problem a great
deal. The wavelength domain vector is a 2,048-vector repre-
sented in one basis, where as the wavenumber vector is simply
a representation of this same data in a separate basis of size



2,048. Thus, there exists a 2,048 × 2,048 change-of-basis
matrix which maps all wavelength domain representations
to wavenumber domain representations. This change-of-basis
matrix is pre-computed and loaded in from a text file at the
start of the program. Resampling is performed by multiplying
each scan, individually, by this matrix.

Within the serial algorithm, this is the step which takes the
most time – upwards of 20 minutes.

7) Fourier Transform: A Fourier transform is taken scan-
wise to obtain the A-Scans in depth. The output of this
transform is about 500,000 2,048-long complex A-Scans, from
which we care only about the phase. However, it is important
to note that this construct is twice as large as the input: about
4 GB.

As we can see from the B-Scan in Figure 4, we only
need vibration measurements at a small subset of the total
number of pixels in a line. That is, less than 100 of the 2,048
pixels in each line actually correspond to anatomical structures
within the cochlea. Thus, we can crop these A-Scans to be
significantly smaller – smaller, even, than the input data.

8) Spectral Domain Phase Microscopy: For each pixels in
the cropped A-Scan, we actually only care about the phase. We
compute the phase using the arctangent of the imaginary part
divided by the real part at each point. Once we have computed
the phase, we gain the displacement simply through pointwise
scalar multiplication as in Equation 2.

B. Parallelizability

1) Background Fitting: Arithmetic averaging can be easily
implemented in parallel in a far quicker manner than in serial,
as can polynomial fitting and normalization. However, as none
of these algorithms are particularly time-consuming in serial
for only 324 vectors of size 2,048, it is not immediately clear
that the serial algorithm will be so slow as to justify the
memory transfers to the device.

Simple serial and parallel algorithms for these steps should
be made, and depending on the time required to transfer the
background to the GPU when compared to computtion time,
we will decide where the computation should be performed.

2) Window Determination: As the superwindow will need
to be transferred to the GPU regardless, it is clear that a
parallelized creation of the superwindow will be preferable
to a serial one. The kernel will simply divide elements of the
hanning window by elements of the smoothed background to
create the superwindow on the GPU.

3) Background Subtraction and Superwindowing: With the
background and superwindow loaded onto the GPU, back-
ground subtraction and superwindowing are simple indepen-
dent scalar subtractions and multiplications applied element-
wise. This can be parallelized at arbitrary levels of granularity.

4) Resampling: Resampling, as a matrix multiplication, can
naturally be parallelized in a number of ways. However, more
interesting is that the change-of-basis matrix is sparse. This
opens the door for a number of interesting techniques through
which to apply parallelization. Sparse approximations of the
matrix of varying sizes, for example, can be tested for accuracy

and speed, while certain sizes may allow for the matrix to be
stored in shared memory and some may not.

C. Fourier Transform

The Fourier transform has already been optimized for GPUs,
and we choose to use a built-in function from a CUDA module
to perform the Fourier transform. This will save us time in
development, allowing us to explore the impact of other parts
of the pipeline deeply.

1) Spectral Domain Phase Microscopy: Much like in the
superwindowing and background subtraction steps, this is a set
of many simple elementwise operations. Even the arctangent
is available as a basic function in CUDA kernels.

IV. DESIGN

We describe here the process by which we determined how
to implement each part of the algorithm, and the conclusions
we have drawn from experimentation and theory. We touch
on important results to do with computation time, but provide
more comprehensive details in the following section.

A. Background Fitting

Three steps are required in the background fitting portion
of the algorithm – a numerical average, a normalization and
a polynomial fitting. To perform normalization, one must first
find a maximum value by which to normalize.

As a first test, averaging and maximum finding were imple-
mented in CUDA kernels. For the former, a simple method
wherein each thread averaged a single index was applied.
For the latter, an efficient reduction algorithm was used.
Individually, these kernels performed significantly fast than
the serial manifestations of these same algorithms, however
the data transfer from host to device dominated the time taken
by the algorithms significantly. In fact, the time taken by the
data transfer and these two kernels was longer than the time
taken to perform the entire background fitting process serially.

Furthermore, a serial implementation of this process in
numpy takes only about 0.01 seconds on average, which is
very short when compared to even the time required to read
the RAW file into RAM. As a result, we choose to implement
this algorithm serially.

B. Window Determination

The creation of the window in parallel is actually also
slower than in serial, as the operation of pointwise division
of two 2,048-length vectors is relatively straightforward. How-
ever, the bottleneck once again is data transfer. As the window
will have to be transferred to the GPU for later computations
anyway, it is actually slightly more efficient to perform this
operation on the GPU. As this operation takes fractions of
a millisecond in either case, this optimization is thoroughly
uninteresting.



C. Background Subtraction, Superwindowing and Resampling

We choose to implement all of these items in a single kernel.
With the superwindow, background and resampling matrix as
inputs, each matrix multiplication operation can operate on the
windowed, background subtracted element of the scan rather
than performing these three operation on the entire data set in
order.The issues of interest are how we choose the block size
and how we choose to implement sparse matrix multiplication.

As for the former, we actually cannot load the entire data
set onto the GPU at once. While some GPUs have over 2 GB
of RAM, we will need more than 4 GB of RAM to compute
the Fourier transform later in the pipeline. This is a lot to
expect, so we instead split the problem into batches.

Batches are equal-sized sets of scans. Batches are loaded
one at a time onto the GPU, and the entire rest of the
processing pipeline (background subtraction, superwindowing,
resampling, Fourier transform and SDPM) is performed on one
batch before the next is handled. That is, batches are traversed
serially, but data within each batch is processed in parallel.

Thread blocks in CUDA can contain up to 1,024 threads.
Choosing this size for blocks, we can have each thread
compute two elements of the resampled scan per scan, and
each thread can handle multiple scans. We vary the number
of scans in each batch and the number of scans handled by
each thread independently.

If the maximum throughput of the GPU is being achieved,
than increases and decreases in the batch size will have
no measurable effect on computation speed. That is, larger
batches will take longer to process, but there will be fewer of
them, while smaller batches will take less time but there will
be more of them. On top of this, the same total amount of data
is being transferred to the GPU across all batches. Thus, so
long as the batch size is not made so low so as to underwork
the GPU (1 scan per batch, for example), the time taken is
approximately fixed.

The same argument applies to the number of scans handled
serially by each thread. If the maximum number of parallel
tasks is at all times being performed by the GPU, then having
more scans per thread leads to more productive, longer lasting
threads while fewer scans per thread leads to less productive,
shorter lasting threads. So long as each thread does not try to
process an enormous portion of the batch so as to clog max
throughput, no change is seen in varying the number of scans
per thread.

Thus we arrive to the understanding that about 100-200
batches of scans, with each thread processing about 200 scans
in the resampling kernel yields the best case scenario, but so
too do many values of these two parameters.

Sparse matrix multiplication is a bit more interesting. The
change-of-basis matrix is not quite sparse, but only approxi-
mately sparse – most elements in it are nonzero but very small
compared to the maxima. Furthermore, the most significant
values in each row or column are consecutive. We choose
to take the N most significant, consecutive values per row,
and send an N×2,048 matrix to the device rather than a

2,048×2,048 one. We also must send the indices at which
these significant values begin in the original matrix.

On the GPU in use, to fit a matrix of this type in shared
memory, we must let N be no larger than 6. This is insufficient
for the accuracy of our computations, so we must instead keep
the matrix in global memory.

The smallest matrix size that gives sufficiently accurate
results is N = 13. This means that for each resampled scan el-
ement, only thirteen multiplications must be performed rather
than 2,048. This is significant, and along with parallelization
gives an incredible speed-up.

In our well-established MATLAB algorithm, the resampling
step takes the longest time of any step – between 10 and 20
minutes. Using N = 13, we find that the background subtrac-
tion, superwindowing and resampling step take only about 11
seconds together. This is a two-order-of-magnitude improve-
ment, and places this computation on the same timescale as
reading the data to RAM.

D. Fourier Transform

The fast Fourier transform (FFT) is an algorithm for com-
puting the discrete Fourier transform (DFT) of an input vector.
This algorithm decomposes a given DFT computation into
several smaller DFT computations which in sum are easier
to compute. For signals that have length 2n for some integer
n, radix-2 factorization can be used to accelerate these small
DFT computations. In our project, each signal is represented
as a row vector with length 2,048, so we can benefit from this
acceleration.

The FFT is performed after the data is resampled. The
resampled data is of the “float” type, but must be converted
into the “complex” type before the FFT operation can take
place. We use the built-in FFT function in the Cupy library,
as it is bold to assume we could write a better FFT algorithm
ourselves. The axis of the FFT operation is set to 1, as we
wish to perform the FFT row-wise.

E. Spectral Domain Phase Microscopy

SDPM is implemented in a single kernel. It has four inputs
and one output. The first input is the result of the FFT, which
is a complex matrix with size BatchSize×2, 048; the second
input is a constant floating point number k = λ/4πn which is
used to calculate the displacement per pixel; the third input is
a cropping factor l which crops the size of each output signal.
At the Fowler lab, most data of interest lies in the first 512
pixels, so we let l = 512 for our experiments; the last input
BatchSize is for boundary condition checking.

For each index in the FFT input, the real and imaginary
part of each complex entry are extracted to compute the phase
at that pixel. Finally, the phase is multiplied by constant
k to calculate the displacement. Because the kernel only
involves pointwise operations, theoretically, there will not be
any running time difference when using different block sizes.

V. RESULTS

We present here the behavior of all used kernels with respect
to variation in parameters such as input size and block size.



These results are used to determine the values which should
be used in a practical implementation of this program.

A. Window Determination

The superwindow is created through a pointwise division
operation of a Hanning window and the smoothed background
vector. The Hanning window and smoothed background each
have 2,048 points, and the maximum block size for one
dimensional blocks in CUDA is 1,024 threads. We test all
available block sizes from 1 to 1,024, as shown in Figure 5. It
can be concluded that the block size will not affect the speed
of this kernel. As a result, we choose 1024 as our block size.

For completeness, we also measure the runtime of the CPU
and GPU algorithms while varying the input vector sizes. For
this, we use two random input vectors and divide them using
either our kernel or numpy pointwise division. As shown in
Figure 6, there are no major differences until the input vector
reaches a very large size – 222. Our OCT system has a 2,048-
pixel camera, which is why our window is 2,048 in length,
however it is worth noting that the GPU algorithm scales to
larger camera sizes and thus to different OCT hardware.

B. Background Subtraction, Superwindowing and Resampling

The background subtraction, superwindowing and resam-
pling kernel (hereafter simply “resampling kernel”) takes a
batch of scans as an input. The block size of this kernel is
varied, and, as stated in the previous section, it is found that
for sufficiently large batch sizes there is little difference in
performance. Figure 7 shows computation time for a single
batch of scans as a function of block sizes. It is clear that for
blocks larger than 2 threads, the performance is approximately
constant. We choose a block size of 1,024.

As discussed in the previous section, the size of the input
batch is similarly inconsequential past some minimum value.
We test the runtime of this algorithm in serial on the CPU as
compared to our kernel for varying input batch sizes, and the
results are shown in Figure 8. We see that for suffieciently
large batches, GPU performance is relatively constant while
CPU runtime increases significantly. The batch will always be
at least oone scan (2,048) point long, so the GPU will always
outperform the CPU for this task. Thus, to determine optimal
batch size, we must look at the other operations in the pipeline.

C. Fourier Transform

Although there is no way to define the block size, grid size
or optimize the memory transfer of our FFT using Cupy, we
still test the speed of the GPU and CPU FFT algorithms. Both
perform row-wise FFTs, each row having 2,048 points, as the
batch size increases from 21 to 216. The resulting runtimes
are shown in Figure 9. Like in resampling, when the batch is
small the CPU outperforms the GPU. However, as batch size
increases, the CPU time starts to explode at about 29 while the
GPU fft time starts to explode at 212, in our project, the batch
size is 212, at which the CPU begins to slow down while the
GPU does not.

Fig. 5. Pointwise division kernel runtime by block size. The block size does
not clearly affect the run time, except for some arbitrary aberrations.

D. Spectral Domain Phase Microscopy

Finally we consider SDPM, which is a simple pointwise
operation kernel. Thus, we expect that the block size will not
affect the speed beyond a certain minimum . Figure 10 shows
the runtime of the SDPM kernel with varying block size N ×
N . For two dimensional square blocks, the maximum size is
32 × 32. After a certain point, as expected, the performance
does not change, so we use 32× 32 blocks.

We also vary batch size and evaluate the running time of
CPU SDPM and GPU SDPM algorithms. Figure 11 shows
these runtimes as a function of batch size. The two curves
begin to diverge at 29. For batch size 212, the CPU time is
0.046 seconds while the GPU time is about 0.0001 seconds,
yielding a speedup of 460×. Thus SDPM does not have a
large effect on total time taken in this processing pipeline.

E. Total Timing

The total timing of our parallelized SDPM processing, with
the optimal parameters chosen above, is about one minute for a
5-second in vivo recording. The serial processing time for this
same file is 20 minutes, suggesting a 20× speedup. The data
loading and background fitting take the same time in either
case, so time is saved almost entirely in the resampling and
SDPM steps. The resampling step, as can be seen in Figure
8, offers a speed-up of approximately 20× at the batch size
used. SDPM on the other hand takes negligible time compared
to its serial counterpart – the GPU algorithm is almost 500×
faster.

VI. CONCLUSIONS

We have shown that parallel processing can be used to sig-
nificantly accelerate the processing of OCT data for cochlear
imaging in vivo. We have also found the parameters under
which this accelerated algorithm performs best (that is, batch
sizes, block sizes, etc.).

The use of batched parallel computations has achieved a
huge speedup – about 20 times – over the currently used
MATLAB algorithm. For long experiments, in which many
data sets of this type are to be processed, it currently takes
about one day to process all of the data with MATLAB. With
our parallelized algorithm, this will only take about one hour,



Fig. 6. Pointwise division runtime for CPU and GPU operations by input
vector size. CPU and GPU times are nearly the same until vectors get very
large – a scenario that will never occur in our problem.

Fig. 7. Resampling kernel runtime by block size. The block size does not
clearly affect the run time after a certain point.

Fig. 8. Resampling runtime for CPU and GPU operations by input vector
size. The GPU outperforms the CPU significantly at batch sizes larger than
29.

Fig. 9. Time taken by FFT kernel and numpy FFT algorithm with varying
input size.

Fig. 10. SDPM kernel runtime by block size. The block size does not clearly
affect the run time for sufficiently large block size.

Fig. 11. SDPM runtime for CPU and GPU operations by batch size. The
GPU outperforms the CPU significantly at batch sizes larger than 29.



greatly widening the bottleneck on our experimentation time
incurred by processing.

About half of the time taken in this processing pipeline
is through loading data into RAM from the RAW files. If
this were implemented in the experimental pipeline rather than
in post-processing, we could achieve a speedup of near 40
times. This would be, however, at the cost of about 30 seconds
spent in the processing of each file during experimentation.
Depending on the experiment, this could actually completely
eliminate the need for post-processing entirely at little cost.

We have also shown that as the data sizes scale up – for
example, if we were to use longer recordings within experi-
ments – the GPU algorithm outperforms the serial algorithm
by an even larger factor. This attests to the scalability of our
kernels, and could open the door for longer-time (and thereby
higher-SNR) experiments at the Fowler Lab in the future.

REFERENCES

[1] E. Hecht, Optics. Pearson, 2017.
[2] W. E. Drexler, Optical Coherence Tomography: Technology and Applica-

tions. Springer International Publishing AG, 2015.


