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Abstract The chemotactic dynamics of cells and organisms that have no spe-
cialized gradient sensing organelles is not well understood. In fact, chemotaxis
of this sort of organism is especially challenging to explain when the external
chemical gradient is so small as to make variations of concentrations minute
over the length of each of the organisms. Experimental evidence lends support
to the conjecture that chemotactic behavior of chains of cells can be achieved
via cell-to-cell communication. This is the chemotactic basis for the Local
Excitation, Global Inhibition (LEGI) model.

A generalization of the model for the communication component of the
LEGI model is proposed. Doing so permits us to study in detail how gradient
sensing changes as a function of the structure of the communication term.
The key findings of this study are, an accounting of how gradient sensing
is affected by the competition of communication and diffusive processes; the
determination of the scale dependence of the model outcomes; the sensitivity of
communication to parameters in the model. Together with an essential analysis
of the dynamics of the model, these findings can prove useful in suggesting
experiments aimed at determining the viability of a communication mechanism
in chemotactic dynamics of chains and networks of cells exposed to a chemical
concentration gradient.
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1 Introduction

Chemotaxis refers to the movement, and by extension to the organization, of
cells and organisms that react to chemical stimulus. Some chemotactic organ-
isms have identifiable structures which are thought to allow these to sense
a chemical gradient. However, plenty of chemotactic cells and organisms do
not have clearly-defined chemical receptors that enable these to distinguish a
bias in the chemical gradient. Chemotaxis for these organisms is even more
difficult to understand when they are small compared to the distance required
to sense a gradient by some electrochemical means in noisy environments. For
freely moving organisms there are a number of models based upon clustering
due to collisional or screening effects owing to the combined effect of diffusive
and drift processes ([2]). For cells, such as those involved in certain heal-
ing processes and prenatal development, where cells are in contact but have
topological development biases that are thought to be, to some extent, chemi-
cally enabled, an alternative chemotactic mechanism is thought to play a role,
namely, chemotaxis mediated by intercellular communication. In this scenario
the gradient sensing in the microorganism involves resolving the differential
chemical concentration, as compared with a background concentration. The
background concentration is determined by a consensus of concentration levels
in neighboring cells in the chain [1].

The Local Excitation, Global Inhibition (LEGI) model, initially proposed
in [3], captures gradient detection via inter-cellular communication. Funda-
mental to the model is whether cells can discern differences between the local
chemical concentration and a background concentration, in the presence of
noise. Experimental evidence for the sensitivity of gradient detection of cell
cohesion and spatial scale demonstrate reduced signal noise chemical concen-
tration differentiation with cell chain size (see [4]). The LEGI formalism, as im-
plemented in [5], captures cell communication via nearest neighbor exchanges
of chemical concentrations. Further laboratory experiments have tested critical
aspects of the chemotactic mechanism in the LEGI formalism (See [7]).

The model captures the interplay of diffusive processes, noisy reactions,
and intercellular communication of a cell chain exposed to an external chem-
ical gradient. An analysis would go a long way in determining how these 3
effects play out, particularly as the system evolves in time. In what follows
we undertake such analysis, taking the opportunity to modify the LEGI as
described in [5] by generalizing the communication mechanism. It is hoped
that doing so will suggest laboratory experiments that can further constrain
the model and determine its validity in explaining chemotaxis among chains of
cells as well as how the communication mechanism would play out in different
cell species.

Experimental studies have focused on the critical question of cell gradient
detection by a comparison to a cell chain reference concentration. The goals
of this study are complementary to the laboratory effort. These are, (1) to
perform an analysis of the generalized LEGI system with an aim of discerning
how the interplay of communication and diffusion play out, as a function of
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cell chain length and cell size; (2) to explore how several straightforward ap-
proximations of the communication mechanism affect chemotactic outcomes.
It is hoped that the insights in this exercise will be helpful in interpreting labo-
ratory observations; (3) to discern how system size plays a role in determining
gradient sensing. In this scenario the signal-to-noise ratio of the live system
is critical. (In the LEGI model thermal noise enters in a very straightforward
way and thus is not highlighted here, nevertheless full consideration of this
issue is outside of the scope of this study); (4) to explain how the competition
of communication and diffusive processes play out in time; (5) to quantify the
effective correlation length of communication as a function of cell size and
model for communication; (6) to determine the sensitivity of the outcomes on
model parameters critical to the communication mechanism.

2 The LEGI Model

The LEGI is an evolutionary model that captures the reaction equations of a
one-dimensional chain of cells, exposed to a diffusing external chemical con-
centration (see [5]). Its distinguishing feature is the presence of cell-to-cell
chemical concentration communication. Each cell sports active receptors, r,
which interact with the external concentration c. The amount of active local
chemical within the cell is denoted by x and y denotes the amount of chemical
with intercellular reach. The concentration r for each cell is dependent on the
concentration, c around that cell. The activation rates for x and y are assumed
to be constant, and denoted by β. The key distinction between x and y is that
x is local to each cell whilst y can be passed between cells, at a constant rate
γ. Hence x and y are activated and deactivated at the same rate, but the
exchange of y between cells leads to differences in amounts of x and y. This
difference between the local and global concentrations is proposed to be the
underlying signal the cell uses to infer the chemical gradient.

2.1 The Standard LEGI Model

We consider a chain of m cells, each cell of length ã. The total length of the
cell chain is given by L = mã. We denote by c0 the average value of the
dimensional concentration c̃. Nondimensionalized, the LEGI model is

∂c

∂t
= ∇2c−

m∑
n=1

δ
( z
L
− zn
L

) drn
dt

,

dr = αcndt− µrndt+ dηn,

dx = βrndt− νxndt+ dξn, (1)

dy = βrndt+

m∑
n′=1

Mnn′yn′dt+ dχn,

M = δn,n′(−ν − 2γ) + (δn−1,n′ + δn+1,n′)(γ),
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where the position is z = z̃/L, and time is t = t̃D/L2. The nth cell is lo-
cated at zn. The non-dimensionalized rates α, β, µ, ν, γ are obtained by
multiplying their dimensional counterparts by ã2/D. Similarly, each chemical
concentration is inversely scaled by c0. From this point on when we refer to
a = ã/L = 1/m as the non-dimensional cell size. Equation (1) is a system
of coupled differential equations where the modified diffusion equation for c
is coupled with a total of 3m equations for r, x, and y. M is a symmetric,
nearest-neighbor coupling term. Thermal fluctuations are captured by dη, dξ,
and dχ, representing uncorrelated incremental Wiener processes with known
variances.

The scaled LEGI model can be written more compactly as follows: Let v(t)
and dW be vectors of length 3m defined, respectively, by

v(t) =


r(t)

x(t)

y(t)

 , dW =


dη

dξ

dχ

 .

Let A, B, and C be the rate matrices

A = −µIm, B = βIm, C = −νIm, (2)

where Im is the m×m identity matrix. The system (1) can thus be recast as

∂c

∂t
= ∇2c−

m∑
n=1

δ
( z
L
− zn
L

) drn
dt

,

dv = Rvdt+ Fdt+ dW (3)

where

R =


A 0m 0m

B C 0m

B 0m M

 , F =


αc

0

0

 .

The 0m represent m×m zero matrices and 0 the column vector of zeros with
length m. In the ensuing analysis we will not have occasion to highlight the
role played by the diffusion processes and thus we will omit these further on.
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3 Generalization of the LEGI Model

Neglecting stochasticity, the continuous-space version of the model is

∂c

∂t
= ∇2c− αc+ µr,

∂r

∂t
= αc− µr,

∂x

∂t
= βr − νx,

∂y

∂t
= βr − νy − γ(w ∗ y), (4)

for t > 0 and z ∈ Ω, the physical domain. In the above equations r(z, t), x(z, t),
and y(z, t) represent the concentrations, and these are assumed known at t = 0.
We will refer to the last term in the y equation of (4) as the communication
term. It is the convolution of y and a weight function w. The (spatial) convo-
lution is defined as

(w ∗ y)(z, t) =

∫ ∞
−∞

w(u)y(z − u, t) du. (5)

We will dispense with any complications that arise from boundary conditions.
The system (4) is thus the continuous-space counterpart to (3), formally, in the
large m and small a limit. In some of our later discussions it will be convenient
to cast (4), formally, as

dy

dt
= L−1 [Af(y, c)] , (6)

where L−1 is a complicated linear operator and A is a spatially-mollifying
operator. In (1) we identify this operator with the operator M , and f is a
known function relating c and y. Alterations to the convolution term affect
the averaging operator A and one can consider, in the finite dimensional case,
A = M + δM , where δM is some perturbation of M .

3.1 The Convolution Term

In order to investigate the impact of chemical communication in (4) we focus
on the convolution kernel w. Among the properties of relevance to the physics,
translational symmetry dictates that the kernel w have the property∫

Ω

w(z)dz = 0.

Furthermore, w should not endow directional preferences to the fluxes of con-
centration. Hence, w should be spatially symmetric.
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The original LEGI becomes a special case of the general model, under
certain approximations and assumptions. Denoting ε the distance between cell
centers, w is explicitly given by

w = 2δ(z)− δ(z − ε)− δ(z + ε), (7)

where δ is the dirac distribution. More nonlocal kernels can be proposed and
their impact on the LEGI model can be analyzed. For example, a family of
continuous kernels that satisfy the physical constraints follow the proposition

fk(z) = (−1)n
d2n

dz2n

(
e−z

2/2σ
)
, n = 1, 2, 3, . . . (8)

where σ is a parameter controlling the effective width of the kernel function.
This family extends the spatial range of dependence of the local concentra-
tion to encompass more cells, with the physical implication that cell chemical
concentrations correlate at shorter or longer distances. The competition of
background diffusion processes and intercellular concentration exchanges can
manifest themselves differently in time and can be classified by the relative
size of the diffusion length scale and the correlation length scale. Furthermore,
we can consider how this tension between diffusion and communication plays
out when the cells are spatially resolved and better characterized as a chain
of discrete neighboring cells.

We analyze first the operator when the support of w is small. Following
[6], we expand y into a Taylor series centered at z, obtaining, to lowest order,
a second-order operator approximation. To see this,∫ ∞
−∞

w(u)y(z − u, t) du ≈
∫ ∞
−∞

w(u)
(
y(z, t)− uy′(z, t) +

u2

2
y′′(z, t)

)
du. (9)

Breaking this up into three integrals and taking the u-independent terms out,
we get

y(z, t)

∫ ∞
−∞

w(u) du− y′(z, t)
∫ ∞
−∞

uw(u) du+ y′′(z, t)

∫ ∞
−∞

u2

2
w(u) du. (10)

By employing the properties that w must satisfy, the first two integrals in
the preceding expression are zero. The remaining integral is a number solely
dependent on the particular kernel in use. We call this number Ω1, allowing
us to simply write

w ∗ y ≈ y′′(z, t)
∫ ∞
−∞

u2

2
w(u) du = Ω1y

′′(z, t). (11)

Replacing this approximation into the last equation of (4) we obtain

∂y

∂t
= βr(z, t)− νy(z, t) +Ω1γy

′′(z, t). (12)

In the case where the diffusion gradient is steep, i.e., the diffusion scale
is small compared to the correlation length of communication, the manner
in which the kernel is mapped onto a discrete cell chain becomes important.
Namely, some approximations lead to sensitive dependence of chemotaxis es-
timates on the nature of the kernel, and more importantly.
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3.2 Cell-Resolved Cases

The original LEGI model is obtained when a second-order finite difference
approximation to (12)

y′′(z, t) =
y(z + a, t)− 2y(z, t) + y(z − a, t)

a2
+O(a2), (13)

is used on (12). Where a = 1/m represents the size of each cell in the model.
This approximation is effectively dictating that each cell can only communi-
cate with its two adjacent cells per unit of time. The approximation of the
Laplacian operator by a second-order finite difference brings in another finite-
size question: If the number of cells is large enough and cell size is small enough
it might be reasonable to contend that the radius of communication can be
larger. Alternatively, we could approximate y′′(z, t) by

y′′(z, t) =
−y(z + 2a, t) + 16y(z + a, t) − 30y(z, t) + 16y(z − a, t) − y(z − 2a, t)

12a2
+O(a4).

(14)

This second approximation couples 5 cells, rather than 3. As we will show,
this has a bearing on the time evolution of the LEGI, as applied to certain
discrete chains.

An alternative kernel approximation is obtained by retaining higher order
terms in the Taylor expansion (9). The next higher order approximation results
in

∂y

∂t
≈ λ(βr(z, t)− νy(z, t) +Ω1γy

′′(z, t) +Ω2γy
(4)(z, t), (15)

where Ω2 is defined by

Ω2 =
1

24

∫ ∞
−∞

w(u)u4du, (16)

with a lowest-order finite-cell representation

y(4)(z) =
y(z + 2a)− 4y(z + a) + 6y(z)− 4y(z − a) + y(z − 2a)

a4
+O(a2).

(17)
External concentration gradients in micro-biological systems will typically not
exhibit the variability one would expect to make the retention of the fourth
derivative term much different from the second derivative, and further, thermal
noise in the system might swamp these differences.

3.3 Comparison of Communication Generalizations

We will present a few calculations that describe how some of the model differ-
ences in the communication term influence the chemotactic dynamics, particu-
larly when the system size is incorporated in the complexity of the system. We
simulate (1) with both second and fourth order finite difference approximation
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# of Cells Method 5 Cells 20 Cells 100 Cells

c(z, 0) = z

Original LEGI 0.43118 0.42838 0.428488

y(2) correction 0.43103 0.42837 0.428488

y(4) correction 0.43103 0.42837 0.428488

c(z, 0) = z4

Original LEGI 0.53390 0.42402 0.42946

y(2) correction 0.41638 0.42743 0.42947

y(4) correction 0.41732 0.42722 0.42947

Table 1 Numerical solutions were run with the given number of cells up to a time t =
5. The table contains relative norms measured over space and time with respect to the
steady state solution (18). Differences between approximations are largest for nonlinear
initial concentration and for small cell counts.

for the second derivative (14) separately, and, in addition, implement (15) with
a centered finite difference formula. The goal of the following calculation is to
highlight that the size of the cell plays a role when choosing a model for com-
munication. Anticipating the findings, when the cell size is small, compared
to the total length of the chain, the results are not very sensitive to the choice
of model, in the long time limit. The story is more nuanced in the short time
limit, but we consider this case further on.

For this numerical experiment we varied the initial concentration between
linear, c(z, 0) = z, and nonlinear, c(z, 0) = z4, with number of cells = 5, 20, 100.
Values for the parameters are chosen to be physically realistic, α = µ = ν =
1, β = 10, γ = 100. Then over the interval t ∈ (0, 5), we compute the relative
errors,

‖y∗ − yi‖/‖y∗‖, i = 1, 2, 3

where y∗ is the steady state solution to (4) for the chemical concentration of
y,

y∗(z) = lim
t→∞

y(z, t) (18)

Here the steady state solution is constant and unaffected by choice of dis-
crete convolution w chosen from (13, 14, 15). y1 is the solution to (1) computed
by second order finite difference second derivative communication, y2 similarly
computed by fourth order finite difference second derivative communication,
while y3 is computed with implementing (14). All of the experiments were
performed without noise. By comparing each solution with (18) we can see
which solutions reach equilibrium the fastest.

When the initial concentration is linear, the percent difference of the two
modified implementations from the original LEGI model solution is less than
.1% and decreases as the number of cells increase. In the nonlinear case, there is
a noticeable difference of 12% between the LEGI and higher order approxima-
tions when the cell sizes are relatively large. As theory predicts, this distinction
decreases as the size cell size a becomes very small, i.e. the number of cells -
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m - increase and the approximations of (5) become closer to the actual convo-
lution’s value. In conclusion, in the long-time limit, the outcomes are sensitive
to the manner in which the communication model is formulated.

The short-time limit is more interesting and it emphasizes more directly
the competition between diffusive and communication effects. Consider the
following idealized experiment: the initial concentrations of c, r are set to zero
everywhere, y is initialized as zero in each cell, except the center cell, taken to
be z = 0, which has an initial value of one. Since c and r are zero everywhere
for every time-step, the only manner in which y changes are by deactivation
and communication. In the very earliest time-steps, this change is heavily
dominated by communication, as γ is typically 10 − 100 times larger than ν.
In the early moments, we look to see the properties of communication between
cells with respect to both distance and time. Using the same notation for each
solution, we look at the autocorrelation, ŷi, of each yi in space. This is done
by application of the Wiener-Kinchin theorem, which is justified by the finite
length of y. That is

ŷi = F−1(F(yi)F(yi)),

where F is the Fourier transform (defined below). Graphs of ŷi after 25 time
steps (t = 0.5) are shown in Figure (1a). The figures convey the differences
between the three communication methods at the early times. Larger sample
correlation imply longer correlation lengths and further spread of the chemical
y. Here we see that the fourth derivative correction clearly increases the rate
of communication of y the fastest for very short time scales. These results
concur with our estimation that a larger effective communication radius leads
to faster flow. Figure (1b) shows the evolution of the wave of information over
time, we record how long it takes for the concentration in y in a cell ∆n units
away from the dirac initial condition to exceed a tolerance of 10−4. For a
radius of roughly 18 cells, the fourth derivative correction term spreads the
chemical y faster than either the original LEGI model or second derivative
correction. This result matches are intuition, but after a certain distance from
the origination of the wave, the original LEGI solution reaches the cells faster.

4 The Competition of Diffusion and Communication and
Sensitivity Analysis

We turn our attention now to the competition of diffusion and communication
and its implications to chemotactic dynamics situation.

4.1 The Time-Steady State

For completeness, we first summarize the steady state. It is clear from (6) that
when ẏ = 0, f(c) lies in the kernel of the averaging (diffusion) operator A. In
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(a)

(b)

Fig. 1 (a) The sample autocorrelation is computed for the solution generated by imple-
menting each of the three communication terms. Larger autocorrelation suggests enhanced
communication. (b) The amount of nondimensionalized time it takes for a cell ∆a units
away from δ(z) initial condition to have a value larger than 10−4 is given as a proxy for cell
communication. In these tests constants were taken to be α = µ = ν, β/ν = 10, γ/ν = 100.
The parameter values are suggested in [5].
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particular, solving (4) yields

∇2c = 0,

r =
α

µ
c,

x =
β

ν
r,

y = F−1
{ β

ν r̂

1 + γ
ν ŵ

}
,

where F is the spatial Fourier transform (defined explicitly below). The amount
of c, taken to be either a constant or a linear gradient, yields r. When γ = 0,
we obtain the solution with no communication term and it is, to with a con-
stant, the same as c. When the communication term is non-zero, the ratio of
γ to ν as well as the support of the w have a bearing on the magnitude of y
(as well as the extent in space affected by communicaiton).

4.2 Transient Dynamics

We examine the role played by deactivation and communication of the chemical
y on the dynamics transient dynamics. The key parameters are ν and γ. The
analysis is easily performed using Fourier transforms. The system (4) in Fourier
space is

∂ĉ

∂t
(k, t) = −k2ĉ− αĉ+ µr̂,

∂r̂

∂t
(k, t) = αĉ− µr̂,

∂x̂

∂t
(k, t) = βr̂ − νx̂,

∂ŷ

∂t
(k, t) = βr̂ − νŷ − γŵŷ,

where ĉ, r̂, x̂, ŷ, ŵ denote the Fourier counterparts to the original space vari-
ables. Note that ŵ(k) is solely a function of the wavenumber k. This system
of ordinary differential equations is linear, and we can represent it in matrix
form as

∂

∂t
Ŷ(k, t) = A(k)Ŷ(k, t), t > 0. (19)

The solution of this equation is

Ŷ(k, t) = eA(k)tŶ(k, 0) = PeΛtP−1Ŷ(k, 0), t ≥ 0, (20)

where A = PΛP−1 is the diagonalization of A(k) where the dependence on
k has been suppressed. In order to explore outcomes as a function of γ and
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Fig. 2 Comparison of Phase and Group Velocities for γ ≈ 10ν for (21). Here, w(z) was
chosen from the family (8).

ν, we consider the evolution in time of the system subject to a Dirac delta
distribution in y at t = 0. In this case,

y(z, t) =
1√
2π

∫ ∞
−∞

ŷ(k, 0)eikze−t(γŵ(k)+ν)dk. (21)

From this expression, it is easy to see that the dispersion relation for this
system of differential equations is given by

ω(k) = i(γŵ(k) + ν).

We note that γ ≥ 0 and ν ≥ 0. Further the physically-relevant parameter
regime is γ > ν, which is to say that the solution is highly dispersive, owing to
the communication mechanism. For γ = 10ν, Figure 2 depicts the phase and
group velocities vp, vg respectively, defined as,

vp = ω(k)/k, and vg =
dω

dk
.

Notice that vp(k) is generally unbounded as k → 0 while vg(k) is bounded for
all k and takes on the value zero at the origin. Furthermore, if we postulate
that w decays exponentially, then vp > vg for large enough values of k. This
intersection is directly related to the support of w(k). Since, dimensionally
speaking k = k̃L, then we are only interested in wave numbers where k̃ > 1/L
and k > 1. It is for these small wave numbers (large wavelengths) that the
group velocity, the speed at which information in the system travels, is more
significant. Only for smaller wavelengths does the phase velocity marginally
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exceed the group velocity. It is this relationship that is relevant when compar-
ing various models for communication. The observation that larger support
of the kernel w(k) leads to the group velocity dominating phase velocity over
smaller and smaller wave lengths supports this hypothesis. The phase veloc-
ity weights the deactivation constant ν greater relative to the communication
parameter γ for small wavenumber and the diffusion contributions from ŵ, in-
dicating that for these waves deactivation influences their individual velocities
to a greater extent. The group velocity, meanwhile, does not incorporate ν and
therefore indicates that wave packets are driven more by communication.

The dispersion relation and group velocity for the LEGI model solution,
second derivative correction, and fourth derivative correction are shown in
Figures 3a and 3b, respectively. Both the dispersion relation and group veloc-
ities are sinusoids, with roughly only the first period shown. The relationship
between the phase and group velocity for each of the approximations parallel
Figure 1. Here we rely on the interpretation of the group velocity as the speed
at which information travels through the system. The fact that the fourth
derivative correction term exhibits a larger group (and phase) velocity indi-
cates that it should propagate information faster through the system (at least
at large wavelengths). The conclusion from Figure 3 is to reinforce the notion
that higher order operators induces larger wave velocities and therefore leads
to greater speed of communication.

Assuming ŵ(k) is sufficiently smooth, we can represent it in terms of a
Taylor expansion about a particular point, which we truncate at the quadratic
term. Keeping with our original assumptions about w (important here is that
w is even) then we can simplify this series and write the solution as

y(z, t) =
e−t(γŵ0+ν)

2π

∫
e−i(kz−iγk

2/2ŵ′′
0 t)dk. (22)

We are able to calculate this Fourier Transform analytically, giving us the
approximate solution for y(z, t),

y(z, t) =
e
−t(γŵ0+ν)− z2

2ŵ′′
0 γt√

2πŵ′′0γt
. (23)

Having this expression enables a fruitful analysis of the chemical’s dependence
on the parameters ν, γ.

There are three immediate conclusions that can be drawn from this for-
mula. First, for a fixed t, γ acts as to control the width of the pseudo-Gaussian
distribution that y has. This matches the intuition and physical reasoning that
γ, being the communication parameter, diffuses the chemical y among the cells
in the system. Similarly, ν acts only in as a rate of exponential decay. This
again intuitively matches are expectation that ν controls the rate of deac-
tivation of y. Furthermore, the entire expression γŵ0 + ν is responsible for
exponential decay. Lastly, when t is relatively small, the importance of γ is
greater than ν. For larger values of t, the decay term is larger than than the
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(a)

(b)

Fig. 3 (a) Dispersion relation corresponding to three approximations for the convolution
term in (4). The LEGI model uses (13), (14) uses a modified second derivative approxima-
tion, and finally (15) includes the fourth derivative term to the approximation of (4). (b)
Similarly, the group velocities for these three approximations.
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diffusive term and the relative importance of γ and ν hinges on the value of
ŵ0.

4.3 Sensitivity to Parameters

We investigate the sensitivity (in forward-time) of the LEGI system to changes
in the parameter vector p = [γ, ν]> (the (·)> indicates transpose). These es-
timates may prove useful in the interpretation and comparisons of model and
experimental results.

Since the system is linear, the sensitivity analysis that follows should be
robust and comprehensive. We solve the following system of differential equa-
tions

∂

∂t

(
∂Ŷ
∂pj

)
= A(k)

∂Ŷ
∂pj

+
∂(AŶ)

∂pj
, for j = 1, 2. (24)

The resulting solutions will give us spatio-temporal information about the
relative sensitivity of our system to changes in the values of γ and ν. With
this information we can create heuristic regimes in which the system operates.
The solution of (24) is given by

∂Ŷ
∂pj

(k, t) = eA(k) ∂Ŷ
∂pj

(k, 0) +

∫ t

0

e(t−s)A(k) ∂(AŶ(k, s))

∂pj
ds. (25)

In particular, continuing with the particular scenario that we have analyzed
heretofore,

∂ŷ

∂p
(k, t) = −e

−t(ν+γŵ)

√
2π

[ŵ, 1]
>

= −ŷ(k, t)[[ŵ, 1]>. (26)

We find that the ratio of these sensitivities is exactly the kernel ŵ, and there-
fore the relative importance (the ratio) of these two parameters is constant in
time and is captured ’in space’ by the structure of ŵ. With regard to the kernel
generating function (8), the key parameter is σ, which controls the variance
of each function. Here, increasing σ, i.e., the correlation length of communica-
tion, corresponds to an increasing sensitivity to the parameter γ. This outcome
has a bearing on signal-to-noise studies, such as those pursued experimentally
in [5].

If we take the inverse Fourier transform of (26), we find that

∂y(z, t)

∂p
= −[(w ∗ y)(z, t), y(z, t)]>. (27)

Increasing the number of cells which can communicate increases the system’s
sensitivity to changes in the communication parameter relative to the deacti-
vation parameter. Finally, in another light, the spatial regimes in which the
system is more sensitive to communication or deactivation the other is defined
by where w(z) = 1.
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5 Discussion and Concluding Remarks

A generalization is proposed of a model that describes cellular chemotaxis via
the competition of thermal effects, reaction-diffusion, and intercellular commu-
nication. The model being generalized is known as Local Excitation Global In-
hibition (LEGI) and it was proposed by Levchenko and collaborators, [3]. The
generalized LEGI model is analyzed with the aim of establishing how cell size,
cell chain length, and alternative proposals for the intercell communication
manifest themselves in the chemotactic model outcomes. We also determined
regimes in space and time where one is expected to see diffusion-dominated or
advective-dominated (via communication) reactions. Additionally, sensitivity
of the outcomes of the model with regard to parameters were derived. These
last two estimates, we argue, could prove useful in interpreting existing exper-
imental results, suggesting new experiments, and comparing the laboratory
data to model outcomes and our understanding of cellular chemotaxis.

Although chemotaxis in the LEGI model is made possible by intercell com-
munication, there is no a-priori way, at present, to constrain some of the details
in the intercell communication term in the model. This gave us the impetus
to consider a general communication model, based upon a convolution oper-
ator. This convolution is taken with respect to a generic kernel. The kernel
encodes correlations among neighboring cells. The kernel is proposed in contin-
uous space, corresponding to the limit of infinitely small cell size and infinitely
large number of cells, for a given total cell chain length. When the correlation
length is small, i.e. when the effective spatial support of the kernel is small,
compared to the length of the chain the chemical concentration is affected by
a finite speed signal, propagating through the chain, as well as by diffusion.
When we focused on long-time dynamics we determined to what extent the
form of the communication model affected the chemotactic process: in the
small-cell limit the results were negligibly dependent on the manner in which
communication is modeled. In practical terms it is shown that in the small-cell
limit comparisons of the LEGI model and laboratory outcomes would be less
dependent on the specifics of the communication term, if this term is to be
modeled by a convolution.

As would be expected, large gradients were shown to lead to different
outcomes with the choice of convolution approximation. In a simple chain of
homogeneous cells, we confirmed that unless the system size is not too small,
the choice of communication model does not affect significantly the model
outcomes. However, it is differences in intercellular concentrations, rather than
the external gradient that counts and thus the choice of communication model
will be more critical in heterogenous in spatial dimensions higher than one.

In the short time limit one can appreciate and discern how communication
and diffusion interplay and how the model results depend on the particular
communication proposed. Generally, chemotactic behavior is dominated by
the communication term, for short times. This presumably has consequences
in some settings when the chemical gradient changes over time. With regard
to the communication model it is found that longer correlation lengths lead to
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faster signal times. It thus might prove useful, if at all possible experimentally,
to determine the speed and dispersion of chemical transport in a cell chain,
when subjected to a transient change in the gradient. This would lead to a
better model as well as better understanding of the chemotactic mechanism
in practical cases.

The effect of thermal noise was ignored in this study. The model is linear
and thus changes in isotropic thermal effects will manifest themselves in the
variance and covariance fields. These fields were not discussed in this study.
Two obvious lines of inquiry, for a future study, are consideration of non-
isotropic diffusion, which can introduce extra time and length scales, as well
as consideration of chemotaxis in multiple dimensions.
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