
 

 

 

 

 

 

Final Project: Custom Computer 

 

Created by Brian Frost-LaPlante and Karol Wadolowski 

ECE-251 

Professor Kirtman 

May 9, 2017 

 

 

 

 

 

 

 

 



Introduction 

The assignment was to create a computer that could implement a specific set of 

instructions (detailed in the next section) using two ICs: a PIC16F877A microcontroller and a 

GAL22V10 PLD (programmable logic device). The two devices were to be interfaced with one 

another. The PLD had been programmed to work as an ALU (arithmetic logic unit) in a prior 

assignment, capable of performing addition, subtraction, logical AND, OR, XOR, NOT, left 

bit-shift and right bit-shift operations on four-bit numbers. This programming was done using the 

WINCUPL language and UI, and the code was loaded onto the 22V10 chip using a 

CHIPMASTER 3000. 

The PIC was to be programmed using MPLAB IDE v8.92 with the MPASM assembly 

language. It was simulated using the MPSIM simulator to view file registers, as well as internal 

EEPROM (electrically erasable programmable read-only memory) values as the simulation 

moved through instructions. This chip was also programmed using the same CHIPMASTER 

3000. 

The project was proposed by Professor Stuart E. Kirtman of The Cooper Union’s 

Electrical Engineering department for a first course in computer architecture (course code 

ECE-251). The project was designed, programed, simulated, implemented and tested by Brian 

Frost-LaPlante and Karol Wadolowski, sophomores in Electrical engineering at the Cooper 

Union. 

 

 

 



Instructions 

The computer was meant to be able to carry out twenty-two unique operations. Among 

these were standard operations such as moving literal values to a register, moving values from 

one register to another and bit tests (skip next instruction if a bit is set/clear). Also, some stack 

operations were implemented, and an internal program counter was allowed to be altered. The 

operation of the program counter is discussed in more detail in the next section. 

The computer was also meant to carry out several arithmetic operations, all of which 

were to be handled by the ALU. Some examples of such operations are covered in detail in the 

next section. 

These operations manifested in 16-bit machine code instructions, containing information 

pertaining to the operations and the operands. To perform an operation on the computer, one 

must consider how this operation would be performed using only the available operations. Then, 

one must convert these operations manually (although an assembler could be written somewhat 

simply) to their 16-bit binary machine code. This machine code must then be initialized to the 

PIC’s internal EEPROM to be read one byte at a time and processed by the computer. Writing to 

and reading from the EEPROM is discussed more in the following section. 

We were given the table on the following page (TABLE I) to determine the machine code 

and operation for each single instruction. TABLE II shows the capability of the ALU, and the 

mode bits used for each of its operations. 

 

 

 



TABLE I (Continued on next page) 

Instr. Syntax Flgs Operation Machine code 

NOP NOP —— No operation 0000 xxxx xxxx xxxx 

ADD ADD Ra, Rb, Rc Z,C Ra = Rb + Rc 0001 aaaa bbbb cccc 

SUB SUB Ra, Rb, Rc Z,C Ra = Rb - Rc 0010 aaaa bbbb cccc 

AND AND Ra, Rb, Rc Z Ra = Rb & Rc 0011 aaaa bbbb cccc 

IOR IOR Ra, Rb, Rc Z Ra = Rb | Rc 0100 aaaa bbbb cccc 

XOR XOR Ra, Rb, Rc Z Ra = Rb ^ Rc 0101 aaaa bbbb cccc 

RRL RRL Ra, Rb C Ra = Rb rotated left by 1 thru C. 0110 aaaa 0xxx bbbb 

RRR RRR Ra, Rb C Ra = Rb rotated right by 1 thru C. 0110 aaaa 1xxx bbbb 

NOT NOT Ra, Rb Z Ra = ~Rb 0111 aaaa xxxx bbbb 

MOV MOV Ra, Rb Z Ra = Rb 1000 aaaa 1xxx bbbb 

MOV MOV Ra, k Z Ra = k 1000 aaaa 0xxx kkkk 

LOD LOD Ra, k Z Ra = Contents of memory at offset k in selected 

bank. 

1001 aaaa 0kkk kkkk 

LOD LOD Ra, @Rb Z Ra = Contents of memory in selected bank at 

offset specified by the 7 LSBs of [R​b​R​b+1​]. 

1001 aaaa 1xxx bbbb 



STO STO k, Ra Z Contents of memory at offset k in selected bank 

= Ra 

1010 aaaa 0kkk kkkk 

STO STO @Ra, Rb Z Contents of memory at offset specified by the 7 

LSBs of [R​a​R​a+1​] in selected bank = Rb. 

1010 aaaa 1xxx bbbb 

TSC TSC Ra, b —— Skip next instruction if bit b in Ra is clear. 1011 aaaa 0xxx xxbb 

TSS TSS Ra, b —— Skip next instruction if bit b in Ra is set. 1011 aaaa 1xxx xxbb 

JMP JMP k —— PC = k 1100 0kkk kkkk kkkk 

JMP JMP @Ra —— PC = 11 bit number specified by the 11 LSBs of 

[R​a​ R​a+1​ R​a+2​]. 

1100 1xxx xxxx aaaa 

JSR JSR k —— PC+1 -> TOS; PC = k 1101 0kkk kkkk kkkk 

JSR JSR @Ra —— PC+1 -> TOS; PC = address specified by the 11 

LSBs of [R​a​R​a+1​ R​a+2​] 

1101 1xxx xxxx aaaa 

RET RET —— PC <- TOS 1110 xxxx xxxx xxxx 

 

TABLE II 

 



Software Implementation and Testing 

Code was written in the assembly language of the PIC microcontroller and converted to a 

HEX file by the MPLAB assembler. As the code is lengthy, dense, and has many parts, only 

some major functionalities are covered in this segment of the documentation. For the entire 

source code, see FinalProject.asm. 

The code was, almost entirely, written one instruction at a time and tested by the writer to 

work in the MPSIM simulator. After each instruction was verified to work in the simulator, a test 

code was programmed onto the PIC and its functionality was tested using LEDs on output/input 

pins. Once all of the instructions had been programmed in, full processes were written to the 

EEPROM to test entire functionality. Two such processes are shown in Video 1 (a counter 

utilizing MOV, SUB, JMP, TSC and TSS) and Video 2 (a survey of the logical operations of the 

computer). Following are a few examples of core portions of the code. 

 ​1 - EEPROM Read/Write 

16-bit machine code instructions are written to the EEPROM using the de function in 

MPASM. It is called before the ‘start’ section of the program and has syntax as follows: 

de b'10000000',b'00000101' 

This would write the byte 10000000 to address 0 in the internal EEPROM and the byte 

00000101 to address 1. In the simulator, these values can be seen in hexadecimal after 

compiling, as in IMAGE I. If one were to look at TABLE I, they could realize that this two-byte 

instruction corresponds to a MOV operation, where the value 0101 is stored in the register 

addressed by 0000.  

 



IMAGE I 

 

Reading from the EEPROM is a slightly more involved process, with details specified in 

the datasheet for the PIC. However, as only one byte can be read at a time, and for all 

instructions but one (NOP) two bytes in an instruction are required to determine the entire 

operation, each read cycle must read two values from the EEPROM and store them in registers 

(called BOne and BTwo in the code). Which EEPROM addresses are read from is determined 

entirely by the program counter. 

2 - Program Counter 

The program counter determines the next instruction to be carried out by the computer, 

and can be altered by means of JMP or the several stack operations available. A register in data 

is labeled PC in code and initialized to 0 before any operations occur. After each instruction 

completes, its value is incremented by 1 unless the instruction is such that it changes the value of 

the program counter (JMP, JSR, RET). The read cycle uses this value to determine which 

address of the EEPROM it reads from, with the first byte’s address corresponding to twice PC. 



This discrepancy of a doubling factor is caused by the fact that each instruction lives in two 

addresses on the EEPROM. This is easily handle in the following way: 

1. The value in PC is moved to the W register (movfw PC) 

2. The value of the W register is doubled (addwf PC,0) 

3. This is stored in the register determining EEPROM address and a read occurs. 

4. The EEPROM address register is incremented by one. 

5. Another read occurs. 

The program counter implemented like this will not run into a strange case where the read cycle 

attempts to read half-way into an instruction. This leads to much easier programming and 

debugging. 

3 - NOP 

The term NOP stands for “no operation”, and a NOP instruction is only necessarily 

characterized by doing absolutely nothing, then incrementing the program counter by 1. In our 

code, however, we implemented a looping procedure to waste a decent amount of time before 

incrementing the program counter, while still not affecting any other registers in use. This 

allowed the NOP operation to act as a delay, allowing for much easier debugging. Specifically, 

in testing, NOPs were placed between each arithmetic operation so that the output/input LEDs 

would maintain their state for some time, allowing us to determine whether their operations were 

desirable.  

4 - Arithmetic 

Generally, 12 outputs from the PIC were wired directly to the ALU. These corresponded 

to two four-bit operands, a 3-bit mode selector (to determine the operation) and a Carry In 



determined by the C flag stored in a system register. 6 outputs of the ALU were then taken as 

inputs to the PIC; the four output bits along with Carry Out and the Zero Flag. PORT B and 

PORT C were used as operand and mode inputs, PORT E was used to output Carry In and take 

in the Zero Flag and Carry Out, and PORT D was used to take in the ALU output value. The 

implementation of these operations were all quite simple in software, and all extremely similar. 

This implementation was tested both by forcing inputs to the PIC in MPSIM and in hardware 

with LEDs. 

5 - Available Memory 

For many of the instructions, the user is allowed to input a memory address between 0000 

and 1111 as an operand. Internal to the pic, these four-bit numbers do not correspond to free 

registers; they in fact correspond to special function registers that we would not want the 

programmer to alter by accident. For this reason, 16 registers between 0xB0 and 0xBF 

(hexadecimal locations of registers in the PIC’s Bank 1) are instead used. The conversion 

between machine code four-bit addresses and the actual registers on the PIC is simply to add 

0xB0 to the given 4-bit number. This is generally implemented throughout the computer, but 

most importantly in the MOV and arithmetic instructions. 

6 - The Stack 

A simple stack data structure was created within the computer. One byte, STCNT (for 

STACK COUNTER) was used to store internally the number of instructions on the stack. The 

stack operations used this number to determine either the most recent object on the stack or the 

next value in the stack available, carried out their desired operation, then 

incremented/decremented STCNT.  



7 - Some Testing Operations 

Each operation was tested on its own, but programs were written to be run by the 

computer to ensure its internal compatibility. One such program is the down-counter seen in 

Video 1, and another such program is the series of arithmetic operations shown in Video 2. Due 

to simplicity, the latter is shown here: 

 de b'10000000',b'00000001' ;Move 0001 to reg0 
de b'10000001',b'00000011' ;Move 0011 to reg1 
de b'00010010',b'00000001' ;Add: reg2 = reg0 + reg1 (Expect 0100 no COut) 
de b'00000000',b'00000000' ;Nop: delay 
de b'00110010',b'00000001' ;AND 0 and 1 (Expect 00001) 
de b'00000000',b'00000000' ;Nop: delay 
de b'01000010',b'00000001' ;IOR (Expect 0011) 
de b'00000000',b'00000000' ;Nop: delay  
de b'01010010',b'00000001' ;XOR (Expect 0010) 
de b'00000000',b'00000000' ;Nop: delay 
de b'00000000',b'00000000' ;Nop: delay 
de b'00000000',b'00000000' ;Nop: delay 
de b'11000000',b'00000000' ;PC = 0 

 
One can verify that the comments correspond directly to the machine code interpretations of 

these bytes. One can also watch Video 2 and see that the expected values of these operations are 

obtained. 

 

 

 

 

 

 

 

 



Schematic 

 

 

 

 

 

 

 

 

 

 



Photograph of Implementation 

 

 

 

 

 

 

 

 

 

 

 



Hardware 

The clock input of the PIC was wired to a 7555 timer in astable mode, operating with 

resistors and capacitors as shown in the schematic. This clock operates at about 10MHz. In the 

image of the physical computer, the yellow LEDs on the top left correspond to the first operand 

of the ALU. The next four green LEDs correspond to the 4-bit output. The next 7 are, from left 

to right, Carry Out, the second operand, Carry In and the Zero Flag. Lastly, the three green LEDs 

on the lower breadboard correspond to the ALU mode. 


