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Abstract

In this paper we propose a system for the real-time tracking of multiple RF sources in
three-dimensional space without the use of RSSI data. We propose the use of angle-of-arrival
estimation using antenna arrays at two distinct locations, followed by triangulation based on
these two computed angles. All computations are to be distributed between an FPGA and a
connected host computer. The estimated locations are to be visualized on the host computer.
We outline the design and operation of a functioning prototype system, and describe methods
by which it can be scaled to a commercially viable motion capture device.
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1 Introduction

Many modern systems for motion capture, such as infrared reflectometry and computer vision, rely
on the maintenance of line-of-sight between the tracking apparatus and the object in question.
Inspired by the ubiquity of radio frequency identification (RFID) tags in industry, as well as their
small size, we considered the plausibility of motion capture of Radio Frequency (RF) sources with-
out maintenance of line-of-sight.

There has been significant activity around the localization of RFID tags, but most 3D motion
capture implementations rely upon Received Signal Strength Index (RSSI) to determine the dis-
tance from the receiver to the transmitter. The existence of line-of-sight affects RSSI directly, so
these tracking methods fail outside of heavily controlled environments.

We thereby propose a method of motion capture which does not rely on RSSI. Instead, we imple-
ment Angle-Of-Arrival (AOA) estimation at two receiver locations and localize using triangulation.
This method is independent of line-of-sight between the receivers and the RF source.

We do not focus on RFID tags due to the added complexity incurred by wireless power transmission.
Instead, we design for the motion capture of active RF transmitters, and perform experiments with
a Software-Defined Radio (SDR).

Using this method, we were able to construct a system which can localize an SDR in space. This
document outlines the design of this system, the observed functionality of the prototype device,
and a procedure by which to improve the prototype device to achieve higher accuracy.

2 Related Works

2.1 RFID Tracking

We have found several papers from the past decade which implement RFID angle-of-arrival estima-
tion, localization and tracking, although none do so for multiple tags in three dimensions. Although
we are not using RFID tags specifically, they operate as constant-frequency RF transmitters, so
results about their localization have clear applications to our proposed design.

In 2010, Angerer et al [1] performed two-dimensional angle-of-arrival estimation of a single RFID
tag using a field programmable gate array (FPGA) and antenna array. The FPGA acts as an RFID
interrogator and reader, and communicates read data to a host computer. This computer then per-
forms an AOA estimation algorithm based on the multiple signal classification (MUSIC) algorithm.
With only two antennas in their array, they found an error of only 3.3o. This is a subset of our
project in some sense; they are doing only AOA in two dimensions rather than three-dimensional
AOA with localization, they are only tracking one tag; but the results serve to inform our project
greatly. Using only two antennas, they were able to achieve a relatively high accuracy, meaning
that the accuracy of a similar system could potentially be improved even further by a larger array.
It also informs the decision to use an FPGA. This paper most importantly serves as a proof of
concept for a large subset of our project.
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In 2017, Qiu et al [3] created a 2D RFID localization system for multiple tags using a single
phased array antenna and RSSI data. This system is the most similar to what we would like to
create, specifically due to the use of antenna arrays, and the tracking of several tags in space. This
implementation is rather limited, due to its reliance upon RSSI data, but it provides a good point
to build off of.

2.2 Digital Downconversion and Quadrature Demodulation

In 2008, Bernal et al [4] published a paper titled Digital IQ Demodulation in array processing:
Theory and Implementation. They present a very simple scheme for performing quadrature demod-
ulation and downconversion in digital hardware, given a certain arithmetic relationship between
the sampling frequency and the carrier frequency. The methods presented in this paper suggest a
signal flow for a project like ours in which quadrature demodulation and downconversion occur on
an FPGA.

3 Implemented Design

To localize RF sources through triangulation, as described in the introduction, we must estimate
the AOA from two distinct locations in space. We thus have two RF-frontends – antenna arrays
with additional analog circuitry – fixed at either end of a wooden mount. The purpose of the
RF-frontends is to pick up signals from the transmitters, amplify them, and downconvert them to
the point that they can be sampled and processed digitally. This process can be visualized with
the block diagram in Figure 1.

To produce AOA estimates we use the MUSIC algorithm, first proposed by Schmidt [20], which
uses phase data at a number of evenly spaced antennas to determine the incoming angle. Thus,
each RF-frontend must contain an array of antennas, each with an associated receiver chain.

The MUSIC algorithm takes as an input an autocorrelation matrix generated from the signals
at each antenna. The signals must first be quadrature demodulated (i.e. IQ demodulated) to gen-
erate such a matrix. We use an FPGA to sample the downconverted data from the RF-frontend,
perform quadrature demodulation and generate the autocorrelation matrices for both arrays at
once. The FPGA also controls the Automatic Gain Control (AGC) on the RF-frontends.

The autocorrelation matrices are then sent to a host computer which performs the MUSIC al-
gorithm for each array. A peak finding algorithm is used to find the AOAs of the RF sources
relative to each of the two arrays. It then performs triangulation, and lastly displays the location of
the sources. For this display and computation, we use Unity – an open-source game development
software. It is free, and can easily be made to interface with the FPGA.

Before implementing and designing any physical portions of our project we ran some simulations
in MATLAB. The simulations were based around the MUSIC algorithm and its viability for our
application. With these simulations, we were able to determine the type of localization accuracy
that we would see with various amounts of antennas in each array and various antenna spacings.
These simulations also helped us decide on the the number of samples to use for autocorrelation
matrices. From these simulations we determined it was best to have 3x3 arrays. Unfortunately,
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Figure 1: Block Diagram of R3CAP. Two arrays, each of 4 receivers, provide sampled data to
the FPGA which processes the data to produce two correlation matrices. In the background, the
FPGA digitally controls the amplification of each receiver to ensure constant amplitude signals.
The FPGA passes the correlation matrix data to a computer processor to produce separate MUSIC
spectra and AOA estimates for each array. The processor then combines the AOA estimates from
each array to produce a 3D location estimate (via triangulation). Lastly, the location is displayed
to the user in a graphical environment.

due to the number of available pins on the FPGA, the size of the arrays had to be decreased to
2x2. The number of samples that we decided to use for the autocorrelation matrices was 1024. The
spacing between antenna arrays was chosen to be 1 m.

In this section, we describe the operation of and design process behind the parts of R3CAP. We do
so in order of signal path.

3.1 RF-Frontend

The RF-frontend is responsible for interfacing the digital processing with the physical world via
signal acquisition. R3CAP’s frontend consists of two identical, custom-designed, phased array
antennas separated by a fixed distance of one meter to allow for signal triangulation. In order
to be able to extract 2D angle-of-arrival information from the incoming signals, the phased array
antennas were constructed as a 2D grid. The array was designed for a digital beamforming scheme,
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meaning that each receiver must provide sampled data (ie. have its own analog to digital converter
(ADC)). As such, each receiver is simply an identical implementation of one mother-receiver design.
The final implemented array design consists of a 2x2 rectangular grid of these receivers, spaced one
half-wavelength apart (λ2 ≈ 16cm). The subsequent subsections will deal with the design of the
mother-receiver first, and then detail the phased array antennas.

3.2 Mother-Receiver

The mother-receiver (RX) itself consists of several sub-components: the antennas, RX-backbone,
automatic gain control, and analog to digital conversion, each of which were designed and prototyped
separately before being assembled as a fully functioning wireless receiver on the final implemented
array. The RX design went through three iterations and was designed primarily through the method
of selecting components via inputting parameters of prospective devices in a gain and compression
table (see Section 10 Appendix). Figure 2 shows the block diagram of the mother-receiver.

Figure 2: Mother-Receiver block diagram.

3.3 Antenna

Johanson Technology chip antennas were chosen primarily for the reason of size and price. The
design of their layout on the array PCBs was followed from the recommendations of the datasheet,
[9]. In the design process, a small prototype PCB, see Figure 3, was designed and ordered for
a proof of concept to demonstrate that these components would work for the project, and that
matching could be performed. This step proved crucial in showing just how non-trivial producing
matching circuits could become.
The goal of antenna matching is to reduce the reflection coefficient seen by the incoming signals
at the antenna. This is given by the scattering parameter S1,1 for the antenna at 915 MHz, our
frequency of interest. However, the relationship is somewhat indirect, as we wish to match the
antenna to the input impedance of our receiver chain, as opposed to an ideal 50Ω load.

Matching a single antenna takes several steps. The first step is to calibrate a Vector Network
Analyzer (VNA). This is necessary as we need to ensure that the reflection coefficients we will be
measuring are accurate. After calibrating the VNA, we power on our full RF-frontend (Figure 38)
and connect the VNA to the SMA connection on one of our chains. With this setup, the input
impedance of our RF chain can be measured. On the VNA, we save the file corresponding to this
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Figure 3: Render of antenna prototype boards, frontside left, backside right. The PCB has four
layers (to simulate the four layer environment of the final board) and has space for a pi-matching
circuit and chip-antenna.

input impedance. An example of the type of response we see at the input to our RF-frontend can
be seen in Figure 4. After obtaining this input impedance data, the receiver chain was disconnected
from the SMA. A 0 Ω resistor was then used to short the SMA connector to ground. This was done
so that we could apply proper port extension to the VNA. After port extension, the resistor was
removed and the antenna was soldered on along with two 0 Ω resistors in series, so that our SMA
was connected to the antenna. The VNA was then used to measure the reflection coefficient of the
antenna. This data was saved as well. An example of the antenna reflection coefficient can be seen
in Figure 5.

Using the Optenni Lab software, we loaded the antenna’s reflection coefficient data. Optenni Lab
allows you to choose an impedance file to match to, for which we select our input impedance file
from the RF-frontend’s receiver chain. We can then select the matched frequency, the range of
component values we have and the supplier they come from. Optenni Lab can produce an optimal
matching circuit using these components in the Π circuit topology. After their generation, these
circuits can be tuned in software, either as a result of us not having the correct value or manufac-
turer associated with the part. Once we find a circuit which seems to be a viable match, we solder
on the recommended components to the PCB.

The reflection coefficient of the antenna circuit is then remeasured with the VNA. An example of
a matched circuit’s reflection coefficient can be seen in Figure 6. If the reflection coefficient after
the Π circuit’s addition is not satisfactory, then Optenni Lab is used again to recommend a single
additional element in shunt. This would then be implemented and viewed again. This entire pro-
cess, not including VNA calibration, was done for the matching of each of the 8 antennas.

3.4 RF-Backbone

The RF-backbone is implemented as a double Intermediate Frequency (IF)-stage receiver. It takes
an incoming 915 MHz signal, downconverts it to 85 MHz with a 1 GHz local oscillator (LO), and
then downconverts this signal again by a 80 MHz LO to 5 MHz. It is then amplified and sampled
by the AGC and ADC blocks respectively (as seen in Figure 7). The details of the schematic for
the backbone were mostly implemented by following the respective datasheets for each of the com-
ponents. These schematics can be seen in Section 9 Appendix.
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Figure 4: The reflection coefficient as seen at the input of the receiver chain.

Figure 5: The reflection coefficient of the unmatched antenna.
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Figure 6: The reflection coefficient of the matched antenna circuit.

The signal from the antenna is first taken to the low noise amplifier (LNA). This component is
important for setting the noise figure (the ratio of input noise to output noise) of the receiver as it
dominates the noise figure equation in a cascaded system. The LNA feeds the signal into a bandpass
filter (BPF) [11] to eliminate out-of-band interference from other sources. The filter chosen is a
surface acoustic wave filter with a center frequency of 915 MHz and a 10 MHz bandwidth. To help
reduce the effects of the filters undesirable max voltage standing wave ratio of 1.5, 3 dB attenuators
[10] were added before and after the filter. This effectively decreases the return loss of the filter by
6 dB at each port.

Next, the BPF feeds into the two IF stages. Each of these stages comprises a double-balanced mixer
[12] followed by a low-pass filter (LPF). The mixers were chosen because they have a relatively high
input compression point (5 dBm) that allows for higher-power input signals to the chain. The
mixer also has an internal output amplifier giving it an overall positive conversion gain of 0.6 dB.
Additionally, the mixers are able to use quite low power levels at the LO input ports (-10 dBm),
allowing the 5 dBm local oscillators to not require amplifiers after being split for the four receivers.
One downside to the chosen mixer is that the input and output ports are both balanced lines,
complicating the design. We opted to keep most of the receiver single-ended, so the mixers both
required balanced-to-unbalanced conversion (known as the use of a ”balun”). This was achieved us-
ing discrete components as per recommendation on the datasheet for narrow-band applications [12].

The output of the unbalanced mixer is then fed into a low-pass filter to remove the upper-sideband
signal from the mixing process. In the first IF stage, the LPF used has a 3 dB cutoff frequency
at 120 MHz, easily cancelling out the undesired 1.915 GHz components from mixing the 915 MHz
signal and 1 GHz LO. At the second IF stage, a 40 MHz LPF is used. This both cancels out the 120
MHz upper-sideband mixer output and suppresses any LO leakage into the IF output. Overall, the
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RF-backbone of the mother-receiver contributes a net positive gain of 6.5 dB to the signal path.

Figure 7: Render of the 2x2 Array PCB, front side.

Figure 8 below shows the prototype of the RX RF backbone. It was used to confirm correct
implementation of the components and to debug our initial design.

Figure 8: Render of the RX Backbone prototype boards, frontside left, backside right. The board
connects an input RF signal to a 15 dB attenuator (for testing purposes) followed by an LNA and
two IF stages (mixers bringing the 915 MHz signal to 85 MHz and 5 MHz).

3.5 Automatic Gain Control and Analog-to-Digital Conversion

Automatic gain control is used to present the analog-to-digital converter a signal that appears to
be of constant amplitude regardless of proximity to the transmitter. The implemented scheme uses
two cascaded analog variable gain amplifiers (VGAs) [14], each controlled by a separate AGC algo-
rithm on the FPGA. The FPGA interfaces to the analog VGAs through digital-to-analog converters
(DACs). Figure 9 An output voltage of 3.3 V – the rail voltage of the ADC – was chosen so that
the full resolution of the ADC could be taken advantage of. This rail-to-rail output voltage is,
however, not achieved through the use of the cascaded VGAs alone due to the compression points
of the amplifiers. The chosen VGAs [14] have variable compression points, approximately linear in
dB from -5 dBm to 8 dBm, dependent on the current gain of the amplifier. This compression range
makes it impossible to bring a signal up to 20 dBm (approximatley 3.3 V), as any input power level
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Figure 9: Block Diagram of the AGC and ADC sections of the Mother Receiver design.

theoretically able to be pushed up by the VGA will put the amplifier in compression. To mitigate
this, a high-speed op amp [15] was used to bring down the required power that the VGAs need
to output from 20 dBm to 8 dBm. To do so, the op amp is configured to provide 12 dB of gain.
Placing the op amp at the output of the VGAs has the added effect of providing a low-impedance
input to the ADC (as requested in its datasheet) [16]. The op amp feeds into the ADC, which is
controlled digitally by the FPGA. The sampled data is used by the AGC algorithm to adjust the
gain of the VGAs accordingly. Details of the AGC and ADC circuits can be seen in Figures 42 and
43 in Section 9 Appendix. Details on the AGC algorithm are discussed in Section 3.8.5.

Automatic gain control and analog-to-digital conversion function blocks were prototyped separately.
The ADC prototype board, seen in Figure 10, contains two ADCs on a single board and BNC con-
nectors for function generator input. This board was instrumental in kicking off some basic testing
and debugging on the FPGA design, although it lacked the op amp driver circuit used in the final
implementation.

Figure 11 shows the AGC prototype boards. Each board is a reproduction of the AC-coupled
evaluation board schematic found on the VGA datasheet [14], along with the eval-board schematic
for the DAC, found in its datasheet [17].

3.6 Local Oscillators

For the implemented array design, involving a 2x2 RX grid, a single local oscillator was routed to
each RX for each mixing stage. Both the 1 GHz [18] and 80 MHz [19] oscillators were chosen for
their sinewave outputs (ultimate spectral purity), and +5 dBm output power. This allows them
to be split into 4 paths for the 4 receivers without requiring extra amplification, as the mixers
require an LO input above -10 dBm, and the splitting brings the LO power level to only -1 dBm.
These components were first tested on the RX backbone prototype boards. Figure 45 and 46 show
the schematics for the 1 GHz and 80 MHz LO configurations used in the final implementation.
Transformer-based power splitters were used to ensure maximum power efficiency (some resistor-
based splitters end up reducing signal power by more than half).
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Figure 10: Render of ADC prototype boards, frontside left, backside right. The board has space
for two ADCs and two RF inputs.

Figure 11: Render of the AGC prototype boards, frontside left, backside right. The board has a
variable gain amplifier connected to a DAC, with according digital inputs and RF inputs/outputs.

3.7 2x2 Array

The 2x2 array was implemented on a 4-layer FR4 PCB. It has 4 identical layouts of the mother
receiver schematic arranged radially, with the antennas at the corners separated by a distance of a
half-wavelength at 915 MHz. The bottom and top layers of the PCB were used for routing signals,
while the middle two layers were used for routing power. The board also houses the two LOs, each
of which are split into four separate signals. A 5 V and 3.3 V voltage regulator are used to power
every component on the board with the exception of the digital supply of the ADCs. The ADCs
are powered by the FPGA’s fixed 3.3V output.

In PCB design, special attention was paid to ensure that crossing RF signals were separated by
ground planes. Figure 44 shows a rendered version of the 2x2 array layout in all its glory. Figure
40 in Section 9 Appendix shows the schematic for the entire array, with sub-schematics presented
in subsequent figures of the Appendix.
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Figure 12: Render of the 2x2 Array PCB, front side.

3.8 FPGA

In order to sample the data from all eight ADCs in parallel and create autocorrelation matrices for
both arrays, as well as perform automatic gain control, we use the ZedBoard FPGA [22]. While
a microcontroller could just as well be used for sampling and gain control, an FPGA is chosen for
the ease with which all 8 signals can be sampled and processed in parallel. This parallel acquisition
and processing is necessary for beamforming, as we require accurate phase data from all 8 signals
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at specific snapshots in time.

Furthermore, the ease with which Finite Impulse Response (FIR) filters can be implemented on an
FPGA is of great use. We also implement a Digital Downconversion (DDC) and IQ demodulation
method which can be in low-level logic, further justifying the FPGA choice. We use the ZedBoard
FPGA because it was available at the school, and FPGAs are otherwise expensive.

The ZedBoard FPGA contains both a Corex-A9 Processing System (PS) and 85,000 Series-7 Pro-
grammable Logic (PL) cells. The PL can be programmed using a hardware description language
(HDL) such as Verilog or VHDL within the Xilinx Vivado software. Through the creation of In-
tellectual Property (IP) blocks, the PL can pass data to the PS. The PS is programmable through
the Xilinx Software Development Kit (SDK), using high-level languages like C or C++. The PS
can then send messages through the Universal Asynchronous Receiver-Transmitter (UART) pro-
tocol to any computer to which it is connected. All HDL code can be found in Section 11 Appendix.

The FPGA must first acquire the data from the ADCs. Then, it must perform IQ demodulation on
each incoming signal, and apply an anti-aliasing filter to both the I and Q signals for each input.
Then, it must take the required outer product computations and average as necessary to generate
the autocorellation matrix entries. All of these tasks can be performed in the PL, after which
the PS can retrieve these matrix entries and send them to the host computer through UART for
further processing. This must all happen quite quickly as well, or else the implementation cannot
be considered real-time.

3.8.1 Data Acquisition

We look to sample at about four times the bandwidth (BW ) of our signal so that we safely sample
above the Nyquist rate. Our RF transmitter has, optimally, no bandwidth, so we design around
the maximum bandwidth of Ultra-High Frequency (UHF) RFID tags. These tags are rated as hav-
ing 250 kHz bandwidth, meaning that a sampling rate of 1 Msps satisfies our requirements. Our
MATLAB simulations show that 8-bit quantization does not compromise our results, so we use the
ADS7040 1 Msps 8-bit serial ADC from Texas Instruments.

We choose a serial ADC rather than a parallel one, as parallel ADCs require more general purpose
input/output (GPIO) pins on the FPGA to use. To illustrate, a single 8-bit parallel ADC requires
8 pins for parallel input and one for a clock signal from the FPGA. On the other hand, an 8-bit
serial ADC requires only one pin for serial input, one for a clock signal and one for a select signal
from the FPGA for a total of only three GPIO pins.

The unfortunate drawback of serial ADCs is that they have a more complex protocol. The ADS7040
uses a variant of the Serial Peripheral Interface (SPI) protocol which uses two control signals and
one serial data output (SDO) signal. The control signals are a negated chip select, CS, and a
serial clock, SCLK. To start up the ADCs, the chip is selected and clocked at least 16 times.
After startup, the ADC must be clocked according to the timing diagram in Figure 13. We have
no trouble meeting the timing requirements, as the ZedBoard has a 100 MHz on-board clock.
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Figure 13: ADC timing diagram in normal operation mode, from the datasheet for the ADS7040.
The specific timing intervals are specified in the datasheet, but are omitted here for brevity.

We have written Verilog code which, on startup, satisfies the startup sequence of the ADCs, and
then proceeds clocking the ADCs according to the datasheet’s timing diagram. We also must, from
this diagram, determine when the data can be read into the FPGA from the SDO pin. To do this,
we implement D-type flip-flops on the FPGA for each data bit. Each flip-flop clocks in the input
at the SDO pin on the rising edge of SCLK for a single data bit, so that at the end of chip select
period, the entire data byte is stored in D-type flip-flops. This byte is then moved to a register
before the next sample is taken.

We test the clock signals first by simulating the operation of this code in Vivado. The output of
this simulation can be seen in Figure 14.

Figure 14: Vivado simulation of the ADC clocks, corresponding to the datasheet’s timing diagram
and having a 1 µs sample period.

We then perform a test by loading this code onto the FPGA and observing the outputs with an
oscilloscope. Screenshots from this test can be seen in Figure 15. When compared to the timing
diagram, you can see the clocking is proper. The shapes of the pulses in these plots are not square,
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but this is merely an artifact of the scope probe’s inability to capture signals at this frequency well.

Figure 15: Oscilloscope screenshot of SCLK and CS outputs from the FPGA when the ADCs are
in standard operation mode (as opposed to startup). The top signal is SCLK, while the lower one
is CS.

Once we had ADC prototype boards, we could then verify the operation of the ADCs themselves.
We did this first by observing an ADC’s SDO output on a scope while it was being clocked by
the FPGA, as seen in Figure 16. We can see key properties of the output this way, but the exact
values are difficult to read given only the signal in time. To test the output values more precisely,
we compiled an IP which allows us to print ADC samples to a serial console on a computer. This
allows us to verify that we are reading in bytes correctly.

It is also important to note that the ADCs output values between 0 and 255, corresponding to
positive voltages at their inputs. This DC bias is a result of our single-ended frontend, but is un-
desirable for our digital signal processing. On account of biasing in the RF frontend, we expect the
ADC input to be centered at half-rail, or 128 in binary. To remove this DC bias, we can thereby
subtract 128 from each ADC input. Using the 2’s complement system for signed binary numbers,
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subtraction of 128 is equivalent to flipping the most significant bit. This is implemented before any
further processing.

Figure 16: The top signal is the input to the ADC going from high to low in time. The bottom
signal is SDO for that ADC. The outputs of the ADC are periodic while the input is constant, as
expected.

3.8.2 Digital Downconversion and IQ Demodulation

To perform DDC and quadrature demodulation we followed the work of [4]. We are sampling an
incoming signal with an assumed bandwidth of 250 kHz at 1 Msps, and our center frequency fIF is
5.25 MHz. This can be expressed as fIF = kfs ± fs

4 for some integer k. The transformation from

analog frequency to digital frequency is given by wd = 2πf
fs

, so the digital signal has a spectrum
like that shown in Figure 17.

To perform DDC, we need to shift the spectrum in either direction by −π2 . Once this is done, there
will be one copy of the signal at baseband, and one at a higher frequency. After an anti-aliasing
filter, this gives us a baseband spectrum as in Figure 18. In the time domain this shift is equivalent
to multiplying the sample at time n by ej

π
2 n. This multiplication can be done using the circuit in

Figure 19.
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The 2’s complement negation blocks in this circuit require a bit of extra explaining – for an 8-bit in-
put, one cannot represent the 2’s complement negative of every input with an 8-bit number. More
precisely, the number -128 (represented in binary as 10000000) has no 2’s complement negative
within an 8-bit system. We thus implement a multiplexer within the 2’s complement block which
carries out standard 2’s complement negation if the input is not -128, and outputs 127 if the input
is -128.

This, of course, incurs an error of 1 bit in the case of a negative-rail input. The 8-bit ADC operates
over an input range of 0 V to 3.3 V, so a single bit difference represents a voltage difference of 3.3V

255 ,
or approximately 13 mV. This is not significant enough to cause major errors.

Note that the two outputs of this circuit are the real and imaginary parts of our baseband sig-
nal, or the in-phase component (I) of the signal and the quadrature component (Q) of the signal
respectively. The circuit works by following the state transition table shown in Table 1.

Figure 17: Output spectrum of the ADC.

Current State Next State Outputs
S1[n] S0[n] S1[n+1] S0[n+1] xI[n] xQ[n]

0 0 0 1 x[n] 0
0 1 1 0 0 -x[n]
1 0 1 1 -x[n] 0
1 1 0 0 0 x[n]

Table 1: Outputs of IQ demodulator and next state depending on current state.
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Figure 18: ADC output after a shift to baseband and low-pass filtering.

Figure 19: Digital quadrature demodulation circuit block diagram. 2’s complement blocks output
the negative of the input according to the 2’s complement system for signed binary numbers.

This method of DDC and quadrature demodulation facilitates implementation in digital logic.
Verilog code is written which implements the circuit in Figure 19 at the gate level, which imposes
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minimal delay. Note that each 8-bit input is now represented by a 16-bit complex number.

3.8.3 Low-Pass Filter

As noted above, the applied digital downconversion and quadrature demodulation method pro-
duces an aliased signal centered at ωd = π. Our desired signal is in the frequency range of
ωd ∈ [−π/4, π/4]. We choose a filter whose stopband begins at ωd = π/2, and whose passband ends
at π/3. This safely ensures that our signal passes through the filter, and the stopband begins at a
lower frequency than necessary so as to remove both the aliased signal and noise in intermediate
bands.

We sacrifice a bit of passband ripple for an attenuation of 50 dB in the stopband. This is motivated
by the fact that our desired spectrum is heavily concentrated at a single frequency, so ripple in
the passband is of little effect. On the other hand, our tests showed that lower attenuation values
on the order of 35 dB were not sufficient to eliminate aliasing effects in our autocorrelation matrices.

We use MATLAB’s fdatool to design the filter. We found that using the p-norm minimizing filter
with p = 128, we can achieve a filter with the desired specifications using 22 filter taps. Using
fdatool’s quantization features, we are able to ensure that the filter still meets the specifications
with 8-bit inputs and 16-bit coefficients (where the coefficients have 15 fractional bits).

The coefficients are thus generated and fed into Vivado’s FIR compiler IP. The frequency response
of this filter can be seen in Figure 20.

We implement 36 such LPFs on the FPGA – one for each I and Q component – and apply them in
parallel to our I and Q data immediately after they have been generated.

To test the operation of the IQ demodulator and LPF, we generate two out-of-phase sine waves at
1.25 MHz in the Vivado software and input them into our ADC module. We feed this output to the
IQ demodulator and LPF module, and observe the output in Vivado. For the first sine wave, we
expect to see Q constant and nonzero, and I to be constant at zero after filtering. For the second
sinewave, we expect Q to be constant at zero, and I to be constant and nonzero. This is observed
in Vivado’s simulator, as shown in Figure 21.

Note that the low-pass filter incurs another enlargement of the data – each of the I and Q components
for a given signal is 24 bits. Thus, after the filter, each value is represented by a 48-bit complex
number. When designing the filter, we specified that 22 of these 24 output bits are fractional,
meaning that from this point forward we must keep track of the fixed decimal point in each binary
number – Vivado does not do this for us.

3.8.4 Autocorrelation Matrix Generation

The input to the MUSIC algorithm is the autocorrelation matrix for each array generated from the
I and Q data over several samples. At a given time step n, we have 4 IQ pairs associated with each
array, which we denote as

xi,n = Ii,n + jQi,n, i ∈ {1, 2, 3, 4}
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Figure 20: Frequency response of the implemented low-pass filter as generated by Vivado’s FIR
compiler IP.

The nth autocorrelation sample is a 4x4 matrix denoted Rn, and has entries given by(
Rn
)
i,j

= xix
∗
j (1)

We then take the average over N samples to get

R =

∑N
n=1Rn
N

One thing that is clear from Equation 1 is that Rn is Hermitian for all n, and so too is R. For our
implementation, we take N = 1024. We compute the entries of Rn at each time step on the FPGA,
and average continuously so that R is immediately available after time step 1024.

The complex conjugation in Equation 1 is achieved simply by taking the 2’s complement negative
of the Q signal, and the outer product is handled with Vivado’s complex multiplier modules. By
the Hermitian property of this matrix, we need only to compute the upper triangular entries.

When multiplying two entries, we need to store the output in a register with size at least the sum
of the inputs’ lengths. We also need to add up the fractional bits, and specify the input and output
fractional bit numbers in the instantiation of the complex multiplier IPs. Thus, as we had 24-bit I
and Q signals with 22 fractional bits, our output has real and imaginary parts each with at least
48 bits, 44 of which are fractional bits. As we have to add up these values later, we should have a
bit more space to avoid overflow. We thus use 56 bits for each of the real and imaginary parts, still
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Figure 21: IQ Demodulator and LPF in Vivado simulation. Here input x corresponds to outputs I
and Q, while input x2 corresponds to outputs I2 and Q2. The first few samples are strange due to
unspecified values in the FIR filter registers at startup, but the filters converge to approximately
constant output for constant input signal. The exact values are not themselves meaningful, on
account of the fact that Vivado is not keeping track of the fixed decimal point in each of I and Q.

24



with 44 fractional bits. Thus, each entry in Rn requires a 112-bit register.

We then need to average the data over samples. We are taking 1024 samples per estimation of
the autocorrelation matrix, so we must perform 1024 additions and then divide by 1024. However,
should we simply add all of the data before dividing, we run the risk of overflow. We solve this
problem by writing a module which performs division by 1024 on 2’s complement numbers combi-
natorially; that is, this division takes minimal time.

The trick is to use the fact that 1024 = 210, so dividing a positive number by 1024 is equivalent to
a right bitshift by 10, replacing all shifted bits with zeros. For negative numbers, it is equivalent
to a right bitshift by 10 as well, but the digits are merely replaced with ones.

With this method, we can divide each sample entry by 1024 first, quickly. Thus, when we add, we
are adding much smaller numbers, and overflow will not occur. We tested this method on the data
shown in Figure 21, and were able to estimate the autocorrelation matrix with less than 1% error
in the spectral norm.

Each ADC sample takes 1 µs, and the demodulation, filtering and Rn generation at each time step
takes less than 1 µs. Thus, every 1.024 ms we can generate an R matrix for both arrays.

3.8.5 Automatic Gain Control

While generating autocorrelation matrices, the FPGA must also control the automatic gain control
units in each receiver chain. This control occurs independent of (and in parallel with) the digital
signal processing.

For a single receiver chain, there are two VGAs and two corresponding DACs as described in the
section on the RF frontend. The DACs are controlled through their own SPI protocol, and the
analog value at their output controls the gain of the VGA.

To determine whether to raise or lower the gain, the FPGA computes the l1 norm (also known as
the taxicab norm or Manhattan norm) of the incoming signal over 50 samples. Recall that the l1

norm of a discrete-time signal x with support of length 50 is given by

||x||1 =

50∑
n=1

|x[n]|

This is computed quite easily in hardware – we subtract 128 from the ADC output (as in the IQ
demodulator) and then take the absolute value of the signal and add it to an accumulating sum.
The absolute value is implemented as a multiplexer which is addressed by the most significant bit
of the data byte, outputting the byte itself if the MSB is 0 (where the byte is positive) or the byte’s
2’s complement negative otherwise. This l1 norm is then compared to theoretically determined
satisfactory bounds.

To determine these bounds, we considered 8-bit-sampled rail-to-rail 5.25 MHz signals with a range
of possible phases in MATLAB and took their l1 norms. The satisfactory range, within which we
do not alter the gain, is determined by the minimum and maximum values seen in this simulation
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across phases. If the l1 norm is lower than this range, we raise the gain by increasing one DAC’s
input by 1. If it is higher than this range, we lower one DAC’s input by 1. Figure 22 shows the
thresholds determined by simulation.
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Figure 22: Cumulative-Sum Thresholds for AGC Algorithm.

When raising the gain of the VGAs, it is important that the second VGA (in terms of signal path)
is updated first, as to ensure that it is not put into compression by the output of the first VGA.
Thus, if we must raise the gain, we raise the second DAC input until it is at maximum, then the
first until it is at maximum. At this point, if the l1 norm is still too small, we do not change the
DAC inputs. Conversely, if we must lower the gain, we first lower the input of the first DAC until
it is at minimum and then the second. This process is illustrated in the pseudocode of Algorithm
1.

To actually implement Algorithm 1, however, we first need to determine the minimum and max-
imum DAC inputs in correspondence with our minimum and maximum VGA gain inputs. The
VGA used is the AD8337 by Analog Devices, and in our frontend it operates in a range of 0 V to 5
V. The datasheet gives an analog gain input vs. gain curve for the VGA with a dual-ended supply
from -2.5 V to 2.5 V, seen in Figure 23. Shifting the curve so that it is centered at 2.5V, we see
that the analog input should go from about 1.9 V to 3.1 V for maximum gain swing.

We then need the DAC inputs that correspond to these voltages. The DAC used is Texas Instru-
ments’ DAC081S101, and its datasheet gives a mapping from digital input to analog output voltage
replicated in Figure 24. For us, VA is 5 V, so to find the input D that encodes the closest output
to 0V < V0 < 5V , we must solve

V0 =
VAD

256

for D, and then round to an integer. For the minimum output of 1.9 V, D should be about 97 (in
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Algorithm 1: Automatic Gain Control

S = 0
for n from 1 to 50 do

S+ = |x[n]|
end for
if S < lower bound then

if DAC2 input < max then
DAC2 input + +

else if DAC1 input < max then
DAC1 input + +

end if
else if S > upper bound then

if DAC1 input > min then
DAC1 input−−

else if DAC2 input > min then
DAC2 input−−

end if
end if

Figure 23: VGA gain input vs. gain as given by the datasheet for a dual-ended supply.

decimal), and for the maximum output of 3.1 V, D should be about 159 (in decimal).

We lastly need to understand the DAC SPI protocol. This is very similar to the ADC protocol,
except that we now have to provide the input to the DAC as well as the clock and chip select
signals. Each DAC has 3 inputs: the clock SCLK, the negated chip select SY NC and the digital
input DIN . The timing diagram for the update of the DAC is given in Figure 25.
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Figure 24: DAC input vs. analog output as given by the DAC’s datasheet.

Figure 25: DAC timing diagram given by the datasheet.

The DAC does not require a separate startup sequence, as the first instance of the usual timing
sequence after the chip is powered on acts as a startup. Both DACs in a chain can be controlled
by a single clock and chip select, and simply have different inputs, as they do not interact with one
another directly.

We compiled an IP which carries out Algorithm 1 for a single AGC unit, which also relies on the
aforementioned data acquisition Verilog code. This IP prints to a serial console the perceived l1
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norm of the incoming signal, allowing us to determine if the norm generation and gain control are
working as expected.

From Algorithm 1, it is clear that we are only altering the gain by a small amount every step. This
is a very simple control scheme with a slow update rate relative to the sample period, but as the
AGC units are updated every 50 samples, this update happens every 50 µs. The worst case amount
of time it would take for the AGC to adapt is if it must adapt across the entire range, i.e. from
minimum DAC input to maximum DAC input. This worst case will take about 2 ms. This is a
very short time when compared to the frame-rate of the final program (at 60 frames per second,
a frame is more than 16 ms long), and it is unlikely that an AGC will actually need to switch
from maximum to minimum gain (or from minimum to maximum gain) in application. This upper
bound is thus deemed acceptable.

We tested the AGC with our AGC prototype boards, and varied the amplitude of a connected
function generator signal to see the gain adapt. The worst case, as described above, was tested
and captured on an oscilloscope, and is shown in Figure 26. It should be noted that the test was
performed with a 30 kHz signal rather than a 5.25 MHz signal, as high frequencies are harder to
capture high-quality images of on our oscilloscope. However, the parts in question operate identi-
cally (according to their datasheets) at 5.25 MHz.

3.8.6 Complete IP and GPIO Constraints

We have a master Verilog file which performs AGC for four receiver chains and creates an autocor-
relation matrix for a single 2x2 antenna array. We wish to turn this into an IP so that we can send
autocorrelation matrix values to the host computer.

To do this we use the Vivado IP generator to create an Advanced Extensible Interface 4 (AXI4)
IP. AXI4 is a protocol which stores specified updating PL-side values in buffers and makes them
available to the PS. Beyond this, it also allows for inputs and outputs to the IP to be constrained
to physical pins on the FPGA.

Each AXI4 buffer is 32 bits long, and we wish to make available each of the upper triangular au-
tocorrelation matrix entries and a single bit which represents that a new autocorrelation matrix is
ready. Each of the entries is 112 bits, and we need to pass 10 of them to the PS, so along with the
bit to show the matrix is ready we need to pass 1121 bits to the PS. This means we need 36 buffers.

We also need an input for each ADC. All four ADCs can be controlled with a single SCLK and
CS, and all eight DACs can be controlled by a single SCLK and SY NC. Each DAC, however,
requires its own digital input pin. In total, this is 12 GPIO pins required for each IP.

We then, of course, need two such IPs so that we can get the autocorrelation matrices for both
arrays. This gives a total of 24 required GPIO pins. The FPGA allows us to access exactly 24
GPIO pins with our own AXI4 IPs.
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Figure 26: Demonstrated operation of a single AGC unit, measured at the output of the second
VGA. This is worst-case gain adjustment occurring in approximately 2 ms as predicted by our
theoretical bound. This is generated by inputing a DC 3.3 V signal into the FPGA as the ADC
input, causing it to think that it should operate the AGCs at minimum gain. Then, at the time
marked by the first horizontal marker, the true ADC input is fed into the FPGA, and it begins to
adapt to the required maximum gain.

3.8.7 Block Design

Vivado requires the creation of a high-level block diagram to detail the interface between the PS,
IPs and GPIO pins. Figure 27 shows the block diagram for our final implemented system, with two
autocorrelation matrix generation IPs. Also included in the block diagram is the ZYNQ7, which is
the PS, and a Processor System Reset and AXI Interconnect block which serve as overhead for the
connection between the PL and PS. The inputs and outputs aside from “CLK” are constrained to
GPIO pins through a constraint file. “CLK” is constrained to the on-board 100 MHz clock through
this same constraint file. The ZYNQ7, Interconnect and Reset block are from Vivado’s IP catalog,
and were not altered by us.

Once a block diagram is created, it must pass a Design Rules Check (DRC) at three levels: be-
havioral, synthesis and implementation. The behavioral DRC functions similarly to a compiler,
checking that the written code does not have syntax errors. The synthesis DRC checks that the
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Figure 27: Vivado block design, in which the blocks labeled RAGC 0 and RAGC 1 are our IPs.

written code can actually be implemented in hardware, ensuring that no signal is driven by hang-
ing inputs or by multiple inputs. The implementation DRC checks that the code can actually be
implemented on the specified FPGA.

Running implementation also generates a number of figures regarding the utilization of the FPGA.
We are concerned mostly with use of space on the FPGA and power usage so that we can consider
the plausibility of scaling up this design for larger arrays.

The power usage is given by Vivado as in Figure 28. Here DSP means Digital Signal Processors,
which are used in the FIR filter and complex multiplier IPs from Vivado’s IP catalog. MMCM
stands for Mixed-Mode Clock Manager, and these are required for the clock dividers which control
the timing of the SPI protocols.

It is clear that the majority of power consumption is from the PS, which is to be expected. As the
power consumed by the PS does not scale with the number of operations being performed on the
PL, the use of larger arrays would not impact this 1.529 W figure. The next largest consumer is
the MMCM. As we increase the number of antennas, we do increase the number of SPI inputs and
outputs, but as the ADCs and DACs are all controlled by the same clocks, the number of MMCMs
does not increase. Thus, the 0.436 W figure would not be impacted by scale-up either. Logic,
signals and DSP all would necessarily increase as a result of scale-up, but they together only make
up 17% of the total power usage.
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Figure 28: Vivado’s estimated power budget of the FPGA.

The estimated PL current draws are given in the ZedBoard Hardware User’s Guide [22], which say
1.2 A can be drawn at 1 V, 300 mA can be drawn at 1.8 V and 50 mA can be drawn at 3.3 V. This
totals to 1.905 W of estimated PL power draw, which is far lower than what is seen in our current
design. Thus, we can assume a scale-up would not be detrimental to our power budget.

We are similarly concerned with the FPGA’s spacial utilization. To determine the use of PL cells,
we can look at the “Device” image created by Vivado implementation as shown in Figure 29. It
can be seen visually that less than half of the available PL cells are used. Figure 30 shows the same
“Device” image with routing overlayed, showing that most routing occurs from the PL to the PS.

As for use of specific hardware elements, such as Look-Up Tables (LUTs), DSPs, Flip-Flops (FFs),
MMCMs and Random Access Memory (RAM), we can look at the generated utilization summary
shown in Figure 31.

From this figure, LUTs, RAM, FFs and IO aren’t a significant problem for our design when we
consider scaling up. MMCM is already at 100% due to the fact that only four are available. The
MMCM units are used in each autocorrelation matrix generator to control the SPI protocols of
the DAC and of the ADC. There are thereby two in each IP. Scaling up to larger arrays does not
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Figure 29: FPGA Device image. Here the light blue squares are used PL cells, the dark blue squares
are unused. Orange represents the PS, and pink represents GPIO.

increase the number of MMCM instances, as each DAC and each ADC is subject to the same clocks.

The only significant problems are thereby DSP units, which are used in the FIR filter and the
complex multiplier IPs generated by Vivado. We can reduce usage of these on a larger scale by
writing our own multipliers or FIR filters, with the understanding that more cells of the PL would
be used in exchange for freeing up DSP space. This is not a problem, as there are many free LUTs
and PL cells.
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Figure 30: FPGA Device image with routing overlayed.
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Figure 31: Utilization breakdown by specific hardware component as generated by Vivado imple-
mentation.
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3.8.8 Serial Communication with Host Computer

We write C++ code in SDK which reads the AXI4 buffers and sends the autocorrelation matrix
entries across UART to the host computer. The process is simple – when we see from the AXI4
buffers that new matrices are ready, we reconstruct the fixed-point signed complex entries of the
matrices and send them across UART using “std::cout”.

Reading the matrix entries from the IP, they are 112 bits long where bits 0 - 55 represent the
imaginary component and bits 56 - 112 represent the real component of the autocorrelation value.
The string is broken up into its real and imaginary components. The two substrings are both
2’s complement numbers. These 2’s complement numbers are then converted to a floating point
number (i.e. float). The floats are then divided by 243 as 43 of the 56 bits for both the real and
imaginary portions represent fractional bits.

Below is an example of converting a 56-bit number from binary to float with 43 fractional bits:
Starting binary number:

10010100010001011110101010001000100100100101111010111011
Find the 2s complement of the starting number:

01101011101110100001010101110111011011011010000101000101
Convert the number to decimal: -30322423868793157
Divide by 243: 3447.2605

After this division, the binary number has finished being converted into a float.

We can send these floats in any format so long as we end each transmission with a carriage return
and new line character. We then flash the FPGA’s system memory so that the FPGA can operate
without being connected to a computer running Xilinx SDK. The associated C++ code can be
found in Section 12 Appendix.

3.9 Unity

Unity is used to visualize the location of the RF transmitter as estimated by R3CAP. We include an
object which represents the physical board on which the frontends and FPGA are held, upon which
there are two squares which represent the position of the frontends. These objects are not movable,
and exist for the sake of interpreting our visualized locations. These objects can be seen in Figure 32.

The estimated location of the transmitter is represented by the location of an orange sphere as
shown in Figure 33. The tag is small compared to the board, as it is meant to be the position of a
point source. It is orange so that it stands out against the grey ground.

A simple camera control mechanism has been implemented as well, which allows users to use the
mouse and arrow keys to navigate about. This is necessary to get a good point of view for various
motion capture applications. Both the camera control and the ball location update are written as
C] scripts, which update the game objects’ locations at every frame. Figure 34 shows a sample
localization from an appropriate angle.
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Figure 32: Unity objects to represent the board

Figure 33: Ball which represents the estimated position of the RF transmitter.

The ball location update is the most important and challenging piece of this Unity program. First,
the host computer must know to look for serial messages from the FPGA containing the autocor-
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Figure 34: An example of what the Unity UI might look like when a source is actually being
localized.

relation matrices. For serial communication, we use the Ardity Unity package. Ardity is designed
to interface Arduinos with Unity, but it provides a general protocol for reading serial messages into
Unity. When the FPGA sends a new string, a message listener game object updates a public string
variable to be the received message.

The tag’s movement controller script can then parse this string (knowing in what format it was
sent from the FPGA) to extract the autocorrelation matrix entries as floating point numbers. With
these entries, the movement controller can call a function which computes the corresponding loca-
tions.

This function is implemented using a C++ Dynamic Link Library (DLL), which allows us to call
C++ functions from within a Unity C] script. All implemented C++ and C] code for the host
computer can be found in Section 13 Appendix. The details of this C++ code follow.

3.10 C++ DLL

The job of the C++ DLL is to take the incoming autocorrelation matrix values from the FPGA and
use them to compute the location of the source. The computed location is then displayed in Unity.
The process of converting the autocorrelation matrix values to a location occurs in the following
order:

1. Create autocorrelation matrices from the autocorrelation values.
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2. Compute the MUSIC spectra from the autocorrelation matrices.

3. Find the peaks of the spectra to identify angles of arrival.

4. Use the AOAs from the two spectra to localize the tags.

3.10.1 Creating the Autocorrelation Matrices From Autocorrelation Values

The C++ code receives the autocorrelation values and then organizes them in the order seen below
with the real and imaginary parts split into two separate float arrays:

r1,1, r1,2, r1,3, r1,4, r2,2, r2,3, r2,4, r3,3, r3,4, r4,4 (2)

The real and imaginary float arrays containing the autocorrelation values are then used to create
autocorrelation matrices. To do this, the Eigen.h and complex.h C++ libraries were used. An
empty 4x4 matrix is instantiated. The upper triangular entries are filled in first with the positions
corresponding to the indices in Eq. 2. After filling the upper triangular portion of the matrix,
the entries in the lower triangular portion, not including the diagonal, are filled in. For the lower
triangular entries ri,j is filled in with r∗j,i, since the autocorrelation matrix is Hermitian. For
example r4,1 = r∗1,4. After doing this the autocorrelation matrix R is ready to be used to calculate
the MUSIC spectrum.

3.10.2 Computing the MUSIC Spectrum

The first step in calculating the MUSIC spectrum, given the autocorrelation matrix, is to compute
the subspace matrix G. G is computed by first finding the eigenvalues and corresponding eigenvec-
tors of R. Suppose there are n antennas in the array and k sources in the environment that are
being tracked, where 0 < k < n. We take the n−k eigenvectors corresponding to the n−k smallest
eigenvalues and use them as the columns of a matrix T of size n× (n− k). Then G = TT ∗, where
T ∗ is the adjoint of T . After computing the subspace matrix, the MUSIC algorithm is performed.
The MUSIC spectrum is computed over a grid of polar angles θ ∈ (−180, 180], and azimuthal angles
φ ∈ [0, 90]. The grid is discretized to 200 points for both θ and φ (2002 points in total). For each

(θ, φ) pair, the wavenumber vector ~k is computed. The wavenumber vector encodes the wavelength
λ of our RF signal and the angle-of-arrival vector ~a (Eq. 3) corresponding to the (θ, φ) pair. Eq.

4 shows how ~k is computed. Then the steering vector ~s is computed using the wavenumber vector
and the location vector ~d. The location vector is just the (x, y, z) coordinate of the antennas in
an array shifted so that the centroid of the array lies at the origin. This way the steering vector
is computed relative to the center of the array. Eq. 5 shows how the steering vector is computed.
With the values of G and ~s the value of the MUSIC spectrum M at (θ, φ) can be computed using
Eq. 6, where ~sH refers to the Hermitian transpose of ~s. We do this for all the grid points to fully
compute the MUSIC spectrum. The meshgrid of θ and φ values is also stored. An example of a
MUSIC spectrum can be seen in Figure 35.

~a = (sin(φ)cos(θ), sin(φ)sin(θ), cos(φ)) (3)

~k =
2π

λ
~a (4)

~s =
e−j

~k·~d
√
n

(5)
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M(θ, φ) = 20log10

∣∣∣ 1

(~sHG~s)

∣∣∣ (6)

Figure 35: A MUSIC spectrum with 4 peaks, each peak corresponds to a unique source.

3.10.3 Peak Finding to Determine AOAs

A peak finding algorithm is run on the MUSIC spectrum matrix M . If there is only one source
to localize, then peak finding is equivalent to finding the maximum entry in the M matrix and its
associated angles. For the general case where there are multiple sources, the value of the MUSIC
spectrum at (θi, φj), for0 ≤ i, j ≤ 199, is compared against the the value of the MUSIC spectrum
at the four adjacent values (θi±1, φj±1). If M(θi, φj) ≥ M(θi±1, φj±1), i.e. is greater than all of
its surrounding values, then there is a peak at (θi, φj). All of the peaks are stored in a list. For
i = 0 (θ = −180◦) and for i = 199 (θ = 180◦) assuming a 200 point resolution on θ, there is a wrap
around corresponding to the physical meaning of the polar angle. This is not necessary for φ as
only the northern hemisphere of possible AOAs is being considered. Consequently, when j = 0 or
199 then M(θi, φj) is only compared against three other values. After all of the peaks are found,
they are sorted in terms of descending values of M(θ, φ). The largest value and corresponding AOA
is considered an actual peak. The next value on the list is then considered. If the taxicab norm
between the AOAs of the first peak and the current peak is less than some threshold value, then
the current peak is not considered to be an actual peak. If the taxicab norm is greater than the
threshold, the current peak is considered an actual peak. This thresholding is done to ensure that
the peaks that correspond to the same source are only counted once as an actual peak. For finding
subsequent peaks, we take the next value on the peaks list and see if the taxicab norm is greater
than the threshold when comparing it to all the actual peaks that were already located. If the
current peak passes the threshold for all the actual peaks already on the list, it is also added to
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the list of actual peaks. We keep going through the list of peaks until the number of actual peaks
found is equal to the number of sources that are being localized.

3.10.4 AOAs to Location

After finding the AOAs for each of the k sources for each of the two antenna arrays, localization
of the sources can occur. Let A1 be the set of the k AOAs corresponding to array 1 and A2 be
the analogous set for array 2. To localize the source, we take one AOA from A1 and one from A2.
For each of these AOAs, we define the direction vectors ~d1 and ~d2 corresponding to the AOA from
A1 and A2 respectively. The direction vectors are computed with Eq. 7. Let ~c1 and ~c2 denote the
centers of each array. Note that each of the direction vectors and center vectors uniquely defines a
line that goes through the center of the array. To localize the source, we need to find the point, ~p1,
on line 1 and the point, ~p2, on line 2 that minimize the distance between the two lines. Using the
direction vectors, we calculate calculate the normal vectors ~ni as defined in Eq. 8 for i = 1, 2.

~di = (cos(θi), sin(θi), arctan(φi)) for i = 1, 2 (7)

~n1 = ~d1 × ~d2 × ~d1

~n2 = ~d2 × ~d1 × ~d2
(8)

Given these normal vectors, ~p1 and ~p2 can be calculated with Eq. 9 and the distance between these
two points is given by Eq. 10.

~p1 = ~c1 +
(~c2 − ~c1) · ~n2

~d1 · ~n2

~d1

~p2 = ~c2 +
(~c1 − ~c2) · ~n1

~d2 · ~n1

~d2

(9)

dist =

∣∣∣∣∣ ( ~n1 × ~n2) · (~c2 − ~c1)

| ~n1 × ~n2|

∣∣∣∣∣ (10)

Now with the two points that minimize the distance between the two lines, the location of the
source can be approximated as ~loc = ~p1+ ~p2

2 .

If there is only one source to localize, then the above procedure will work without any issues.
With more sources, there arises a problem with associating an AOA for array 1 to its corresponding
AOA in array 2. We propose the following solution: pick an AOA from A1 and find the distance
between the chosen AOA from array 1 to all the AOAs in A2. Match the AOA from array 1 to
the AOA from array 2 that minimizes the distance as defined in Eq. 10. Then remove these two
AOAs from there respective sets. Pick another AOA from A1 and match to the distance minimizing
AOA from the AOAs that remain in A2. Continue doing this until all the sources are located. This
method is not optimal in locating all the tags – it would be optimal to compare the total distance
between the points for all permutations of AOAs from array 1 and array 2, and then choose the
permutation that minimizes the distance. However, this optimal method has complexity O(n!)
while our proposed method has complexity O(n2) where n is the number of sources. After doing
this all the sources are localized. The locations are then passed to Unity where they are displayed.

41



3.11 Physical Implementation: PLANC

The Poly Localization Array Network Carrier (PLANC) can be seen in Figure 36. PLANC consists
of two RF-frontends and an FPGA. The two RF-frontends are separated one meter apart. The
FPGA is located in the middle of the board to maintain an equal signal path length to each of the
RF-frontends. The RF-frontend PCB without any components can be seen in Figure 37. Each PCB
contains four receiver chains. Each chain starts in a corner, works its way to the center, makes a 45
degree turn and outputs at an edge of the board. The PCB also contains the necessary circuitry to
provide power to all the components and the circuitry necessary to split the oscillator outputs to all
the mixers on the board. The final soldered PCB can be seen in Figure 38. The two RF-frontends
and the FPGA were screwed down to the board to ensure the distances between the arrays does
not change.

Figure 36: PLANC consists of two RF front ends and an FPGA.

Figure 37: RF-frontend PCB without any components. Left: front of the PCB. Right: back of the
PCB.
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Figure 38: RF-frontend PCB with four receiver chains fully soldered.

4 Functionality

4.1 Observed Capabilities

Our device is able to perform angle-of-arrival estimation from both of the two arrays, as well as
localization of a high-power 915.25 MHz source. Furthermore, the source can be localized regardless
of line-of-sight between either array. Figure 34 shows a sample snapshot in the localization of a
transmitter with total distance error of about 10 cm. Our setup for experiments of this type is
shown in Figure 39.

For localization experiments with a fixed-position source, error in the tens of centimeters is seen.
This is as predicted by our MATLAB simulations for 2x2 arrays. The orange ball is seen to jump
about a 10 cm ball (volume of space) centered around the true location, which remains within our
error bounds. The RF source in our experiments is an SDR which is programmed to transmit
constantly at 915.25 MHz. We use GnuRadio to program the device through ethernet.

Human motion near the RFFEs can cause substantial reflections and increase the error. Different
environments may substantially impact our error, but the SDR’s requirement of ethernet and the
FPGA’s and SDR’s requirement of wall power restricts our current environment testing capabilities.
The creation of handheld transmitters would mitigate these problems.

Motion of the SDR is tracked, but the error is too high at each snapshot to see smooth motion.
The location error at each snapshot is most importantly impacted by the number of antennas in
the array according to our simulations.
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The power of the transmitter currently has to be quite high – around 25 dBm – for localization at
about 1 m from each RFFE. The power and distance at which AOA can be performed successfully
are different for each array, however. This is a result of matching. The matching process can be
repeated at each antenna to ensure the best possible matching, but this will require more passive
components and time.

Figure 39: Our experimental setup. On the shelf is the USRP N200 SDR. Below is the R3CAP
PLANC, where the FPGA is powered by wall and an independent power supply (right) provides
the RFFEs with 3.3 V and 5 V rail voltages.

We have thus achieved our goal of proof-of-concept localization, but it is clear that future work will
be necessary for R3CAP to be a commercially viable motion capture device.

4.2 Known Sources of Error

The following list contains all known sources of error within our implemented design, all of which
can be mitigated in future implementations.
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• Antenna mismatching: can add phase noise and decrease signal amplitude, lowering Signal-
to-Noise Ratio (SNR)

• Component phase delay: If components in each RF chain have different phase responses, the
phase data necessary for the MUSIC algorithm could be corrupted

• Op amp biasing: Our digital backend requires that the input signal is centered at mid-rail to
apply AGC and to generate autocorrelation matrices, and resistor values may cause the bias
voltage to be offset from mid-rail.

• Electrical noise due to mixed signal design: Due to analog and digital components sharing
a ground and power rail with minimal shielding, there is non-negligible noise caused by the
analog and digital coupling. A PCB could be designed with this fact in mind.

• Quantization: quantization always leads to error, although our simulations show that 8-bit
quantization achieves acceptable accuracy.

5 Future Work

5.1 RF Frontend

5.1.1 Scaling Up

From our simulations, scaling up the arrays to 3x3 would give accuracy more in-line with our
original motion tracking goals. However, future work in scaling should also include an investigation
into sub-quarter wavelength arrays or dense-arrays. Of course, this work is reliant on creating a
cheaper and more compact receiver design.
Due to the time constraints of this project, a time-money trade-off taken advantage of to the
detriment of the design of the project. For example, with a smarter LO configuration that takes
advantage of a PLL one could replace the two-IF stage design with a single IF-stage, which would
not only greatly decrease the cost of a receiver but also save space on a PCB and reduce power
consumption. Future work could also involving looking at alternative AGC components to reduce
the space and power consumption of those units. Another interesting area of future work is the
exploration of using frequencies other than 915 MHz. While a higher frequency would allow for
smaller dimension arrays it would also bring a significant price increase in components and PCB (a
better PCB substrate, likely Rodgers, would have to be used). A lower frequency could decrease
the cost of components and allow for less line-of-sight dependency. In conjunction with dense array
configurations, this approach could prove very fruit-full and may be an exciting area of future work.

5.1.2 Interference Cancellation for use with RFID Tags

As the implemented design currently stands, an RF transmitter is required for localization (which
for us has been an SDR). Hence, one is required to have several RF transmitters (at the right
frequency!) on hand to take advantage of device’s multiple source motion capture capabilities. One
way to mitigate this problem is to modify the frontend to include a transmitter and interference
cancellation so that one could use RFID tags (at the right frequency!) for localization. This would
severely complicate the receiver design and only adds the benefit of smaller objects for localization.
The authors recommend instead exploring the design and implementation of mobile transmitters
(see Section 5.5).
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5.2 FPGA

5.2.1 Scaling Up

As described in the Implemented Design section, the main concern in scaling the number of receivers
up is DSP usage. Our current design makes use of built-in IPs for complex multiplication and FIR
filters, but these operations could easily be written so as to not make use of DSPs. If we built our
own FIR filters or multipliers, they would incur similar delay but would likely be space-inefficient,
as they would not make use of the specialized DSPs. Although it seems that we have LUT and PL
cell space to make up for this, it is worth considering the scenario in which we would have to make
our program more space-efficient.

The easiest way to do this would be to curtail the “data explosion” incurred by complex multipliers
and FIR filters. As most of these bits are fractional, we can simply drop a number of them at
the cost of some precision. Tests would be required to determine how far we could reduce this the
precision before it negatively affects our location accuracy.

5.2.2 Computation

Theoretically, the process of localization could be sped up by moving all computations currently
performed on the Host computer to the FPGA. However, we currently see quick (with respect to
the Unity framerate) computation of locations from autocorrelation matrices on a ThinkPad Yoga
14 (which is not equipped with state-of-the-art processing power). Thus, for real-time functionality,
this move is not necessary. This move would also require potentially more space than is possible
on the FPGA. As such, this is the least concern in considering improvements that could be made
to the FPGA implementation.

5.3 Host Computer

5.3.1 Unity

Our current implementation in Unity could be aesthetically improved greatly by making more de-
tailed game objects. The game objects currently involved in our Unity environment are the bare
minimum required to understand the results of our experiment, but more realistic representations
of both the PLANC and the transmitter would greatly improve the aesthetic quality of our visual-
ization program.

Furthermore, we only currently have the ability to represent a single transmitter in space. This is
a result of our only having one SDR daughterboard capable of transmitting at 915 MHz. We will
eventually want the ability to choose how many sources are being tracked, and have a number of
selections for visual representation of these sources.

5.3.2 C++ DLL

In the future we would like to test beamforming algorithms other than MUSIC. One particular
beamformer that we would want to look into is the Minimum Variance Distortionless Response
beamformer (MVDR) [21]. The MVDR algorithm also uses an autocorrelation matrix to obtain
AOAs, so this algorithm can be tested with no changes to the physical portions of our project. We
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would like to see how its speed and localizing capabilities compare to the MUSIC algorithm that
we have already implemented. On top of this, we would like to optimizing our code so that it can
run faster and keep up with the influx of data coming from the FPGA.

5.4 Physical Implementation

There are several aesthetic and practical changes that we wish to make to PLANC. On the aesthetic
side, we want to clean up the wiring and spray paint the board once more. On the practical side, we
want to add power circuitry so that we can have a single plug that we can put into an outlet instead
of using a power supply as we do now. This would make testing less difficult, and ensure that our
voltages are always set to the right value as opposed to using the power supply. A power supply
can be dangerous, as a mistaken turn of the knobs can cause our whole project to be overvolted.

5.5 Transmitters

To take advantage of the full capabilities of the implemented design (multi-source localization), one
needs several mobile RF transmitters. Future work should focus on the design and implementation
of compact mobile RF sources at the correct frequency.

6 Potential Applications

R3CAP, in its current state, is not yet accurate enough for most commercial applications. However,
when scaled up, R3CAP can have a wide range of motion tracking and localization applications in
industry settings.

As for industrial applications, R3CAP can perform the currently implemented localization tasks
used in warehouses to locate items in storage, with the added benefit that items in motion in ware-
houses can be tracked if necessary. Larger-scale industrial uses include cargo cranes, which already
in some cases employ similar triangulation schemes to localize the cargo they must move.

When compared to other motion capture methods, R3CAP has an advantage because of its lack
of necessity of line-of-sight. As a result, a single R3CAP board can be used with small RF trans-
mitters on the body of a tracked subject, as opposed to current methods such as computer vision
and infrared reflectometry which require multiple apparatuses to make constant line-of-sight. This
reduces both cost and space, and could even be implemented by amateur animators with ease.

Lastly, the implementation of a transmitter could allow for the motion tracking of any passive
UHF RFID tags. This could provide a wealth of home and industry applications which we have
not even considered, as almost anything can be tracked with RFID tags. Of course, with custom
transmitters, this is the case as well, but they are active and would likely be less compact than an
RFID tag.
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7 Conclusion

R3CAP is a real time beamformer capable of locating RF sources that are nearby. It uses 8 an-
tennas over two arrays to acquire the 915 MHz, downconvert it to 5 MHz, and then performs an
analog to digital to conversion. The bit stream coming from each antenna’s receiver chain is then
processed on the FPGA to compute signal the incoming signal strength so that the AGC can be
adjusted to keep our signal rail-to-rail without clipping. The incoming digital data is processed
further by the FPGA. Digital IQ demodulation and filtering are performed before the incoming bit
stream is used to calculate autocorrelation values. The autocorrelation values are then passed into
The PS of the FPGA where they are prepared as float arrays and then sent to the host computer.
The host computer then feeds the float arrays into the C++ DLL code. This code performs the
MUSIC algorithm to compute the MUSIC spectrum. Peak finding is used on the MUSIC spectrum
to find the AOAs of the RF sources relative to each array. The AOAs from each array are then
matched appropriately to localize the tag. The localized tag is then displayed in Unity relative to
PLANC. PLANC has both antenna arrays screwed down to it along with the FPGA.

R3CAP was able to locate a single RF source within our predicted error bound for the size of
arrays that were used. The range can be improved by improving the matching on the antennas,
while localization performance can be improved by adding more antennas to each array.
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9 Appendix – RF-Frontend Schematics
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Figure 41: Antenna Pi-Matching sub-schematic
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Figure 42: Schematic of the AGC circuit, as used in the Array prototype schematic (Figure 40).

10 Appendix – RF-Frontend Gain Compression Table and
Parts-list
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Figure 43: Schematic of the ADC configuration, as used in the Array prototype schematic (Figure
40).

11 Appendix – HDL Code

11.1 Constraints

11.1.1 base constraints.xdc

## Clock signal

set_property PACKAGE_PIN Y9 [get_ports CLK]

set_property IOSTANDARD LVCMOS33 [get_ports CLK]

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports CLK

]

##Pmod Header JA

#Sch name = JA1

set_property PACKAGE_PIN Y11 [get_ports {Din0 [0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0 [0]}]

#Sch name = JA2
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Figure 45: Schematic of the 1 GHz local oscillator configuration, as used in the Array prototype
schematic (Figure 40).

set_property PACKAGE_PIN AA11 [get_ports {Din0 [1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0 [1]}]

##Sch name = JA3

set_property PACKAGE_PIN Y10 [get_ports {Din0 [2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0 [2]}]

##Sch name = JA4

set_property PACKAGE_PIN AA9 [get_ports {Din0 [3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0 [3]}]

##Sch name = JA7
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Figure 46: Schematic of the 80 MHz local oscillator configuration, as used in the Array prototype
schematic (Figure 40).

set_property PACKAGE_PIN AB11 [get_ports {Din1 [0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1 [0]}]

##Sch name = JA8

set_property PACKAGE_PIN AB10 [get_ports {Din1 [1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1 [1]}]

##Sch name = JA9

set_property PACKAGE_PIN AB9 [get_ports {Din1 [2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1 [2]}]

##Sch name = JA10
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ARRAY PROTOTYPE V1 -- 2X2 RECEIVER ARRAY
Single RX
Componenent Gain Max Power (dbm) IP1 (dbm) Pwr into cmpt (dBm) Vsupply (V) Max Current (mA) Part # Features Footprint Datasheet Price ($) quantity
ANT -4 33 -25 0915AT43A0026 Chip custom https://www.johansontechnology.com/datasheets/0915AT43A0026/0915AT43A0026.pdf0.95 10 1
LNA 17.8 21 -1 -29 3.3 100 SKY67159-396LF RF Choke needed DFN8 https://www.mouser.com/ds/2/472/SKY67159_396LF_203397C-1132396.pdf4.37 10 1
ATTN -3 20 -11.2 PAT1220-C-3DB-T5Pi Network, Max 1.3 VSWR 0805 / custom https://www.susumu.co.jp/common/pdf/n_catalog_partition16_en.pdf0.35 18 1
BPF -3.5 10 -14.2 B39921B3726U41010 MHz BW, Max 1.9 VSWR DDC6C / SMD-6 https://en.rf360jv.com/inf/40/ds/ae/B3726.pdf1.89 18 1
ATTN -3 20 -17.7 PAT1220-C-3DB-T5Pi Network, Max 1.3 VSWR 0805 / custom https://www.susumu.co.jp/common/pdf/n_catalog_partition16_en.pdf0.35
MIXER 0.6 10 5 -20.7 5 28 LT5526 Differential IO, -10dBm LO 16QFN 4x4 https://www.analog.com/media/en/technical-documentation/data-sheets/5526f.pdf6.97 18 1
LPF -2 30 -20.1 MEM2012V121R 100 MHz cutoff custom https://product.tdk.com/info/en/catalog/datasheets/3tf_commercial_signal_mem2012v_en.pdf0.46 10 1
MIXER 0.6 10 5 -22.1 5 28 LT5526 Differential IO, -5dBm LO 16QFN 4x4 https://www.analog.com/media/en/technical-documentation/data-sheets/5526f.pdf6.97
LPF -1 30 -21.5 NFL21SP106X1C3D10 MHz cutoff, -35dB@50MHz, 100mAcustom https://www.murata.com/en-eu/products/productdata/8796731277342/ENFD0006.pdf0.41 10 1
VGA 0 8.2 -22.5 5 25 AD8337 100 MHz BW, DC-coupled DFN8 3x3 https://www.analog.com/media/en/technical-documentation/data-sheets/AD8337.pdf6.25 18 1
VGA 0 8.2 -22.5 5 25 AD8337 100 MHz BW, DC-coupled DFN8 3x3 https://www.analog.com/media/en/technical-documentation/data-sheets/AD8337.pdf6.25
OPAMP 12 -22.5 5 LMH6639MF SOT23-6 http://www.ti.com/lit/ds/symlink/lmh6639.pdf1.6 10 1
ADC 22 -10.5 3.3 0.1 ADS7040IDCUR 1 MHz, single ended, SPI VSSOP 8 ADS7040 1.2 10 1
total 14.5 206.1 38.02 368.18

LOs Freq (MHz) output pwr (dbm) stability (MHz) Vsupply (V) Max Current (mA)
LO1 1000 5 0.015 3.3 35 CCSO-914X3-1000 custom http://www.crystek.com/crystal/spec-sheets/clock/CCSO-914X3-1000.pdf49.5 1 1
LO2 80 5 0.002 5 35 CVSS-945-80.000 same as LO1 http://www.crystek.com/crystal/spec-sheets/vcxo/CVSS-945.pdf29.09 1 1
Pwr Splitter 5-1000 MAPD-009278 custom https://cdn.macom.com/datasheets/MAPD-009278-5T1000.pdf2.64 14 1
Value footprint quantity x1 array 115.55
1.5pF 0603 12
100ohm 0603 6
0.1uF 0603 2
100pF 0603 2

LNA LC Components ALL RLC COMPONENTS
Value footprint quantity x1 rx Value footprint quantity price part #
100pF 0603 4 1.5pF 0603 29 0.1 https://www.digikey.com/product-detail/en/yageo/CC0603CRNPO9BN1R5/311-1050-1-ND/303095X 1
1nH 0603 1 4.4pF 0603 21 0.26 399-16187-1-ND X 1
33nH 0603 2 11pF 0603 21 0.1 1276-2173-1-ND X 1

47pF 0603 21 0.1 478-1171-1-ND X 1
4.7kohm 0603 1 100pF 0603 41 0.1 311-1069-1-ND X 1

180pF 0603 21 0.1 1276-1255-1-ND X 1
Mixer Balun LC Components 1nF 0603 21 0.1 1276-1018-1-ND X 1
Value footprint quantity x1 rx 0.1uF 0603 49 0.1 1276-1000-1-ND X 1
--- RF1 --- 1uF 0603 13 0.1 1276-1036-1-ND X 1
4.4pF 0603 2 2.2uF 0805 33 0.11 https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL21B225KPFNNNE/1276-1188-1-ND/3889274x 1
6.8nH 0603 2
18nH 0603 1 1nH 0603 13 0.1 712-1424-1-ND x 1
--- IF1 --- 6.8nH 0603 21 0.1 https://www.digikey.com/product-detail/en/johanson-technology-inc/L-14C6N8JV4T/712-1432-1-ND/1914882x 1
330nH 0603 3 18nH 0603 13 0.1 https://www.digikey.com/product-detail/en/johanson-technology-inc/L-14C18NJV4T/712-1437-1-ND/1914887x 1
11pF 0603 2 33nH 0603 21 0.1 https://www.digikey.com/product-detail/en/johanson-technology-inc/L-14C33NJV4T/712-1440-1-ND/1914890x 1
0.1uF 0603 1 68nH 0603 21 0.1 https://www.digikey.com/product-detail/en/johanson-technology-inc/L-14C68NJV4T/712-1444-1-ND/1914894x 1
2.2uF 0805 1 120nH 0603 21 0.1 https://www.digikey.com/product-detail/en/johanson-technology-inc/L-14CR12JV4T/712-1447-1-ND/1914897x 1
--- RF2 --- 330nH 0603 37 0.1 https://www.digikey.com/product-detail/en/abracon-llc/AIML-0603-R33K-T/535-11615-1-ND/2782832x 1
47pF 0603 2 5.6uH 0603 29 0.1 https://www.digikey.com/product-detail/en/abracon-llc/AIML-0603-5R6K-T/535-11604-1-ND/2782847x 1
68nH 0603 2
330nH 0603 1 49.9ohm 0603 21 0.1 https://www.digikey.com/product-detail/en/yageo/RC0603FR-0749R9L/311-49.9HRCT-ND/730211x 1
--- IF2 --- 3kohm 0603 13 0.1 https://www.digikey.com/product-detail/en/panasonic-electronic-components/ERJ-3EKF3001V/P3.00KHCT-ND/1746757x 1
5.6uH 0603 3 1kohm 0603 13 0.1 https://www.digikey.com/product-detail/en/rohm-semiconductor/ESR03EZPJ102/RHM1.0KDCT-ND/1762924x 1
180pF 0603 2 1Mohm 0603 13 0.1 https://www.digikey.com/product-detail/en/te-connectivity-passive-product/CRGCQ0603J1M0/A130109CT-ND/8577941x 1
1uF 0603 1 11Mohm 0603 13 0.1 https://www.digikey.com/products/en/resistors/chip-resistor-surface-mount/52?k=&pkeyword=&sv=0&pv2085=u11+MOhms&sf=0&FV=1c0002%2C400005%2Cffe00034&quantity=&ColumnSort=1000011&page=1&stock=1&datasheet=1&pageSize=25x 1
2.2uF 0805 1 4.7kohm 0603 13 0.1 https://www.digikey.com/product-detail/en/yageo/RC0603JR-074K7L/311-4.7KGRCT-ND/729732x 1

100ohm 0603 49 0.1 https://www.digikey.com/product-detail/en/stackpole-electronics-inc/RMCF0603FT100R/RMCF0603FT100RCT-ND/1942965x 1

Figure 47: Gain Compression Table and Parts-list for 2x2 Array prototype.

set_property PACKAGE_PIN AA8 [get_ports {Din1 [3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1 [3]}]

#Sch name = JB1

set_property PACKAGE_PIN W12 [get_ports {SCLK}]

set_property IOSTANDARD LVCMOS33 [get_ports {SCLK}]

#Sch name = JB2

set_property PACKAGE_PIN W11 [get_ports {notCS }]

set_property IOSTANDARD LVCMOS33 [get_ports {notCS }]

##Sch name = JB3
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set_property PACKAGE_PIN V10 [get_ports {SCLKDAC }]

set_property IOSTANDARD LVCMOS33 [get_ports {SCLKDAC }]

##Sch name = JB4

set_property PACKAGE_PIN W8 [get_ports {notSYNC }]

set_property IOSTANDARD LVCMOS33 [get_ports {notSYNC }]

#Sch name = JB7

set_property PACKAGE_PIN V12 [get_ports {ADC_0 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_0 }]

#Sch name = JB8

set_property PACKAGE_PIN W10 [get_ports {ADC_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_1 }]

##Sch name = JB9

set_property PACKAGE_PIN V9 [get_ports {ADC_2 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_2 }]

##Sch name = JB10

set_property PACKAGE_PIN V8 [get_ports {ADC_3 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_3 }]

#Sch name = JC1_P

set_property PACKAGE_PIN AB7 [get_ports {SCLK_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {SCLK_1 }]

#Sch name = JC1_N

set_property PACKAGE_PIN AB6 [get_ports {notCS_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {notCS_1 }]

##Sch name = JC2_P

set_property PACKAGE_PIN Y4 [get_ports {SCLKDAC_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {SCLKDAC_1 }]

##Sch name = JC2_N

set_property PACKAGE_PIN AA4 [get_ports {notSYNC_1 }]
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set_property IOSTANDARD LVCMOS33 [get_ports {notSYNC_1 }]

#Sch name = JC3_P

set_property PACKAGE_PIN R6 [get_ports {ADC_0_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_0_1 }]

#Sch name = JC3_N

set_property PACKAGE_PIN T6 [get_ports {ADC_1_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_1_1 }]

##Sch name = JC4_P

set_property PACKAGE_PIN T4 [get_ports {ADC_2_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_2_1 }]

##Sch name = JC4_N

set_property PACKAGE_PIN U4 [get_ports {ADC_3_1 }]

set_property IOSTANDARD LVCMOS33 [get_ports {ADC_3_1 }]

#Sch name = JD1_P

set_property PACKAGE_PIN V7 [get_ports {Din0_1 [0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0_1 [0]}]

#Sch name = JD1_N

set_property PACKAGE_PIN W7 [get_ports {Din0_1 [1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0_1 [1]}]

##Sch name = JD2_P

set_property PACKAGE_PIN V5 [get_ports {Din0_1 [2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0_1 [2]}]

##Sch name = JD2_N

set_property PACKAGE_PIN V4 [get_ports {Din0_1 [3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din0_1 [3]}]

#Sch name = JD3_P

set_property PACKAGE_PIN W6 [get_ports {Din1_1 [0]}]
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set_property IOSTANDARD LVCMOS33 [get_ports {Din1_1 [0]}]

#Sch name = JD3_N

set_property PACKAGE_PIN W5 [get_ports {Din1_1 [1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1_1 [1]}]

##Sch name = JD4_P

set_property PACKAGE_PIN U6 [get_ports {Din1_1 [2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1_1 [2]}]

##Sch name = JD4_N

set_property PACKAGE_PIN U5 [get_ports {Din1_1 [3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Din1_1 [3]}]

11.2 Autocorrelation Generator and Submodules

All HDL code written entirely by us is included herein. IPs generated by Vivado, such as counters,
clock wizards, FIR filters and complex multipliers are not included. Furthermore, AXI protocols
and block diagram wrappers generated by Xilinx are not included.

11.2.1 autocor backend.v – Autocorrelation Matrix Generator

‘timescale 1ns / 1ps

module autocor_backend(

input Clk ,

input data_in_0 , input data_in_1 , input data_in_2 , input data_in_3 , // ADC Inputs

output reg [111:0] R11 , output reg [111:0] R12 , output reg [111:0] R13 , output

reg [111:0] R14 ,

output reg [111:0] R22 , output reg [111:0] R23 , output reg [111:0] R24 ,

output reg [111:0] R33 , output reg [111:0] R34 ,

output reg [111:0] R44 , // Rij is the ijth entry in autocorr matrix , Hermitian so

no need for lower indices

output wire R_ready , // Signals when all 1024 samples have been processed and

the R matrix can be read

output ADC_STARTEND ,

output notCS , output SCLK , output [3:0] LPF_out_valid ,

output SCLKDAC , output notSYNC , output [3:0] Din0 , output [3:0] Din1 // Control

for ADCs

);

wire [2:0] notSYNCs;

wire [23:0] I0, Q0, I1 , Q1 , I2 , Q2, I3, Q3;

wire [23:0] Q0c , Q1c , Q2c , Q3c; // These are the negative Qs , used for cplx conj

// wire [3:0] LPF_out_valid ;

wire [10:0] SAMPNO; // Number of samples taken so far

wire [7:0] go;

wire mult_in_valid , mda_valid , CLR , ADC_OUT_VALID;

wire [9:0] mult_out_valid_int , mult_out_valid;

wire [111:0] Rtemp11 , Rtemp12 , Rtemp13 , Rtemp14 ,

Rtemp22 , Rtemp23 , Rtemp24 , Rtemp33 , Rtemp34 , Rtemp44;

wire [111:0] Racc11 , Racc12 , Racc13 , Racc14 , Racc22 , Racc23 , Racc24 , Racc33 ,

Racc34 , Racc44;
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// Rtemp is output of adder , Racc is average accumulating , Rij is full output ,

asserted until next is ready

wire RST;

initial

begin

R11 <= 0;

R12 <= 0;

R13 <= 0;

R14 <= 0;

R22 <= 0;

R23 <= 0;

R24 <= 0;

R33 <= 0;

R34 <= 0;

R44 <= 0;

end

// ----------------------- IP Initialization

---------------------------------------------//

synth_adc_timing adc (Clk , notCS , SCLK , ADC_OUT_VALID , go, ADC_STARTEND ,CLR);

clk_wiz_2 DACclock (SCLKDAC ,Clk);

adc_to_iq ADC0 (Clk , go, ADC_STARTEND , ADC_OUT_VALID , SCLK , CLR , data_in_0 ,

I0, Q0 , LPF_out_valid [0], SCLKDAC , notSYNC , Din0[0], Din1 [0]);

adc_to_iq ADC1 (Clk , go, ADC_STARTEND , ADC_OUT_VALID , SCLK , CLR , data_in_1 ,

I1, Q1 , LPF_out_valid [1], SCLKDAC , notSYNCs [0], Din0[1], Din1 [1]);

adc_to_iq ADC2 (Clk , go, ADC_STARTEND , ADC_OUT_VALID , SCLK , CLR , data_in_2 ,

I2, Q2 , LPF_out_valid [2], SCLKDAC , notSYNCs [1], Din0[2], Din1 [2]);

adc_to_iq ADC3 (Clk , go, ADC_STARTEND , ADC_OUT_VALID , SCLK , CLR , data_in_3 ,

I3, Q3 , LPF_out_valid [3], SCLKDAC , notSYNCs [2], Din0[3], Din1 [3]);

negate24 neg0 (Q0,Q0c);

negate24 neg1 (Q1,Q1c);

negate24 neg2 (Q2,Q2c);

negate24 neg3 (Q3,Q3c);

//

// [ 0 1 2 3 ] 0->R11

// [ - 4 5 6 ]

// [ - - 7 8 ]

// [ - - - 9 ]

//

mult_div_add op_0 (Clk , mult_in_valid , {Q0c ,I0}, {Q0 ,I0}, Racc11 ,

mult_out_valid_int [0], Rtemp11);

mult_div_add op_1 (Clk , mult_in_valid , {Q1c ,I1}, {Q0 ,I0}, Racc12 ,

mult_out_valid_int [1], Rtemp12);

mult_div_add op_2 (Clk , mult_in_valid , {Q2c ,I2}, {Q0 ,I0}, Racc13 ,

mult_out_valid_int [2], Rtemp13);

mult_div_add op_3 (Clk , mult_in_valid , {Q3c ,I3}, {Q0 ,I0}, Racc14 ,

mult_out_valid_int [3], Rtemp14);

mult_div_add op_4 (Clk , mult_in_valid , {Q1c ,I1}, {Q1 ,I1}, Racc22 ,

mult_out_valid_int [4], Rtemp22);

61



mult_div_add op_5 (Clk , mult_in_valid , {Q2c ,I2}, {Q1 ,I1}, Racc23 ,

mult_out_valid_int [5], Rtemp23);

mult_div_add op_6 (Clk , mult_in_valid , {Q3c ,I3}, {Q1 ,I1}, Racc24 ,

mult_out_valid_int [6], Rtemp24);

mult_div_add op_7 (Clk , mult_in_valid , {Q2c ,I2}, {Q2 ,I2}, Racc33 ,

mult_out_valid_int [7], Rtemp33);

mult_div_add op_8 (Clk , mult_in_valid , {Q3c ,I3}, {Q2 ,I2}, Racc34 ,

mult_out_valid_int [8], Rtemp34);

mult_div_add op_9 (Clk , mult_in_valid , {Q3c ,I3}, {Q3 ,I3}, Racc44 ,

mult_out_valid_int [9], Rtemp44);

dff mo0 (mult_out_valid_int [0],Clk ,0,1, mult_out_valid [0]);

dff mo1 (mult_out_valid_int [1],Clk ,0,1, mult_out_valid [1]);

dff mo2 (mult_out_valid_int [2],Clk ,0,1, mult_out_valid [2]);

dff mo3 (mult_out_valid_int [3],Clk ,0,1, mult_out_valid [3]);

dff mo4 (mult_out_valid_int [4],Clk ,0,1, mult_out_valid [4]);

dff mo5 (mult_out_valid_int [5],Clk ,0,1, mult_out_valid [5]);

dff mo6 (mult_out_valid_int [6],Clk ,0,1, mult_out_valid [6]);

dff mo7 (mult_out_valid_int [7],Clk ,0,1, mult_out_valid [7]);

dff mo8 (mult_out_valid_int [8],Clk ,0,1, mult_out_valid [8]);

dff mo9 (mult_out_valid_int [9],Clk ,0,1, mult_out_valid [9]);

and multinvalid (mult_in_valid ,LPF_out_valid [0], LPF_out_valid [1], LPF_out_valid

[2], LPF_out_valid [3]);

and multoutvalid (mda_valid ,mult_out_valid [0], mult_out_valid [1], mult_out_valid

[2], mult_out_valid [3],

mult_out_valid [4], mult_out_valid [5], mult_out_valid [6],

mult_out_valid [7],

mult_out_valid [8], mult_out_valid [9]);

// multinvalid control may need to change

// counter to 1024 counts how many samples have been taken

sample_counter sc (mda_valid ,1,0,SAMPNO);

assign RST = ~SAMPNO [0] & ~SAMPNO [1] & ~SAMPNO [2] & ~SAMPNO [3] & ~SAMPNO [4] & ~

SAMPNO [5] & ~SAMPNO [6]

& ~SAMPNO [7] & ~SAMPNO [8] & ~SAMPNO [9] & ~SAMPNO [10];

dff112 mao0 (Rtemp11 ,mda_valid & ~SAMPNO [10],RST ,1,Racc11);

dff112 mao1 (Rtemp12 ,mda_valid & ~SAMPNO [10],RST ,1,Racc12);

dff112 mao2 (Rtemp13 ,mda_valid & ~SAMPNO [10],RST ,1,Racc13);

dff112 mao3 (Rtemp14 ,mda_valid & ~SAMPNO [10],RST ,1,Racc14);

dff112 mao4 (Rtemp22 ,mda_valid & ~SAMPNO [10],RST ,1,Racc22);

dff112 mao5 (Rtemp23 ,mda_valid & ~SAMPNO [10],RST ,1,Racc23);

dff112 mao6 (Rtemp24 ,mda_valid & ~SAMPNO [10],RST ,1,Racc24);

dff112 mao7 (Rtemp33 ,mda_valid & ~SAMPNO [10],RST ,1,Racc33);

dff112 mao8 (Rtemp34 ,mda_valid & ~SAMPNO [10],RST ,1,Racc34);

dff112 mao9 (Rtemp44 ,mda_valid & ~SAMPNO [10],RST ,1,Racc44);

always @(posedge SAMPNO [10])

begin

R11 <= Racc11;

R12 <= Racc12;

R13 <= Racc13;

R14 <= Racc14;

R22 <= Racc22;
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R23 <= Racc23;

R24 <= Racc24;

R33 <= Racc33;

R34 <= Racc34;

R44 <= Racc44;

end

assign R_ready = SAMPNO [10];

endmodule

11.2.2 dff.v – One-Bit D-Type Flip-Flop

‘timescale 1ns / 1ps

module dff(

input D,

input Clk ,

input reset ,

input CEn ,

output reg Q

);

always @(posedge Clk)

if (reset)

begin

Q <= 1’b0;

end

else if (CEn)

begin

Q <= D;

end

endmodule

11.2.3 dff112.v – 112-Bit D-Type Flip-Flop

‘timescale 1ns / 1ps

module dff112(

input [111:0] D,

input Clk ,

input reset ,

input CEn ,

output reg [111:0] Q

);

always @(posedge Clk)

if (reset)

begin

Q <= 0;

end

else if (CEn)

begin

Q <= D;

end

endmodule

11.2.4 negate24.v – 24-Bit 2’s Complement Negation

‘timescale 1ns / 1ps
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module negate24(

input [23:0] A,

output [23:0] negA

);

wire cout;

adder24 adder_0 (~A,23’b0 ,1,negA ,cout);

endmodule

11.2.5 adder24.v – 24-Bit Adder

‘timescale 1ns / 1ps

module adder24(

input [23:0] A,

input [23:0] B,

input CIN ,

output [23:0] S,

output COUT

);

wire Cint [22:0];

add adder_0 (A[0],B[0],CIN ,S[0],Cint [0]);

add adder_1 (A[1],B[1],Cint[0],S[1],Cint [1]);

add adder_2 (A[2],B[2],Cint[1],S[2],Cint [2]);

add adder_3 (A[3],B[3],Cint[2],S[3],Cint [3]);

add adder_4 (A[4],B[4],Cint[3],S[4],Cint [4]);

add adder_5 (A[5],B[5],Cint[4],S[5],Cint [5]);

add adder_6 (A[6],B[6],Cint[5],S[6],Cint [6]);

add adder_7 (A[7],B[7],Cint[6],S[7],Cint [7]);

add adder_8 (A[8],B[8],Cint[7],S[8],Cint [8]);

add adder_9 (A[9],B[9],Cint[8],S[9],Cint [9]);

add adder_10 (A[10],B[10], Cint[9],S[10], Cint [10]);

add adder_11 (A[11],B[11], Cint [10],S[11], Cint [11]);

add adder_12 (A[12],B[12], Cint [11],S[12], Cint [12]);

add adder_13 (A[13],B[13], Cint [12],S[13], Cint [13]);

add adder_14 (A[14],B[14], Cint [13],S[14], Cint [14]);

add adder_15 (A[15],B[15], Cint [14],S[15], Cint [15]);

add adder_16 (A[16],B[16], Cint [15],S[16], Cint [16]);

add adder_17 (A[17],B[17], Cint [16],S[17], Cint [17]);

add adder_18 (A[18],B[18], Cint [17],S[18], Cint [18]);

add adder_19 (A[19],B[19], Cint [18],S[19], Cint [19]);

add adder_20 (A[20],B[20], Cint [19],S[20], Cint [20]);

add adder_21 (A[21],B[21], Cint [20],S[21], Cint [21]);

add adder_22 (A[22],B[22], Cint [21],S[22], Cint [22]);

add adder_23 (A[23],B[23], Cint [22],S[23], COUT);

endmodule

11.2.6 add.v – One-Bit Full Adder

‘timescale 1ns / 1ps

module add(

input a,

input b,

input cin ,

output s,

output cout

);
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assign s = (a ^ b) ^ cin;

assign cout = ((a ^ b) & cin) | (a & b);

endmodule

11.2.7 mult div add.v – Arithmetic Involved in Averaging

‘timescale 1ns / 1ps

module mult_div_add(

input Clk ,

input in_valid ,

input [47:0] aH,

input [47:0] a,

input [111:0] Rcurr ,

output out_valid ,

output [111:0] out ,

output [111:0] mult_out , output [111:0] div_out

);

// wire [111:0] mult_out;

// wire [111:0] div_out;

cmpy_0 mult (Clk , in_valid , aH , in_valid , a, out_valid , mult_out);

divcplx div (mult_out ,div_out);

addcplx cadd (Rcurr , div_out , out);

endmodule

11.2.8 divcplx.v – Division of a Complex Number by 1024

‘timescale 1ns / 1ps

module divcplx(input [111:0] in , output [111:0] out);

divby1024 re (in[55:0] , out [55:0]);

divby1024 im (in[111:56] , out [111:56]);

endmodule

11.2.9 divby1024.v – Division of 56-Bit 2’s Complement Numbers by 1024

‘timescale 1ns / 1ps

module divby1024(

input [55:0] a,

output [55:0] aon1024

);

assign aon1024 [44:0] = a[55:10];

assign aon1024 [55:45] = {a[55],a[55],a[55],a[55],a[55],a[55],a[55],a[55],a[55],a

[55],a[55]};

endmodule

11.2.10 addcplx.v – Addition of 112-bit Complex Numbers

‘timescale 1ns / 1ps

module addcplx(

input [111:0] a,
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input [111:0] b,

output [111:0] out

);

safe_add re (a[55:0] ,b[55:0] , out [55:0]);

safe_add im (a[111:56] ,b[111:56] , out [111:56]);

endmodule

11.2.11 safe add.v – 56-Bit Full Adder

‘timescale 1ns / 1ps

module safe_add(

input [55:0] a,

input [55:0] b,

output [55:0] sum

);

wire [3:0] cint;

adder32 a_0 (a[31:0] ,b[31:0] ,1’b0,sum [31:0] , cint [0]);

adder8 a_1 (a[39:32] ,b[39:32] , cint[0],sum [39:32] , cint [1]);

adder8 a_2 (a[47:40] ,b[47:40] , cint[1],sum [47:40] , cint [2]);

adder8 a_3 (a[55:48] ,b[55:48] , cint[2],sum [55:48] , cint [3]);

endmodule

11.2.12 adder32.v – 32-Bit Full Adder

‘timescale 1ns / 1ps

module adder32(

input [31:0] A,

input [31:0] B,

input CIN ,

output [31:0] S,

output COUT

);

wire [2:0] CINT;

adder8 a_0 (A[7:0],B[7:0],CIN ,S[7:0] , CINT [0]);

adder8 a_1 (A[15:8] ,B[15:8] , CINT[0],S[15:8] , CINT [1]);

adder8 a_2 (A[23:16] ,B[23:16] , CINT[1],S[23:16] , CINT [2]);

adder8 a_3 (A[31:24] ,B[31:24] , CINT[2],S[31:24] , COUT);

endmodule

11.2.13 adder8.v – 8-Bit Full Adder

‘timescale 1ns / 1ps

module adder8(

input [7:0] A,

input [7:0] B,

input CIN ,

output [7:0] S,

output COUT

);
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wire Cint [6:0];

add adder_0 (A[0],B[0],CIN ,S[0],Cint [0]);

add adder_1 (A[1],B[1],Cint[0],S[1],Cint [1]);

add adder_2 (A[2],B[2],Cint[1],S[2],Cint [2]);

add adder_3 (A[3],B[3],Cint[2],S[3],Cint [3]);

add adder_4 (A[4],B[4],Cint[3],S[4],Cint [4]);

add adder_5 (A[5],B[5],Cint[4],S[5],Cint [5]);

add adder_6 (A[6],B[6],Cint[5],S[6],Cint [6]);

add adder_7 (A[7],B[7],Cint[6],S[7],COUT);

endmodule

11.2.14 synth adc timing.v – Clock Control for ADC

‘timescale 1ns / 1ps

module synth_adc_timing(input Clk , output wire notCS , output wire SCLK , output wire

byte_read , output wire [7:0] go,

output wire START , output reg CLR);

wire [7:0] STATE;

wire [7:0] STARTSTATE;

wire [7:0] DATASTATE;

wire bitread;

wire slowClk;

wire locked;

wire int_SCLK;

wire int_notCS;

wire int_START;

wire int_bitread;

wire int_byteread;

clk_wiz_0 twentyM (slowClk ,0,locked ,Clk);

initial

begin

CLR <= 1;

@(posedge Clk)

begin

CLR <= 0;

end

end

c_counter_binary_0 STATECOUNT (Clk ,START ,CLR ,STATE);

c_counter_binary_0 STARTCOUNT (slowClk ,~START ,CLR ,STARTSTATE);

c_counter_binary_1 DATACOUNT (bitread ,START ,CLR ,DATASTATE);

dff dSCLK (int_SCLK ,Clk ,CLR ,1,SCLK);

dff dnotCS (int_notCS ,Clk ,CLR ,1,notCS);

dff dSTART (int_START ,Clk ,CLR ,1,START);

dff dbitread (int_bitread ,Clk ,CLR ,1,bitread);
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dff dbyteread (int_byteread ,Clk ,CLR ,1, byte_read);

// dff data7 (DATA ,SCLK ,CLR ,go[7], data_byte [7]);

// dff data6 (DATA ,SCLK ,CLR ,go[6], data_byte [6]);

// dff data5 (DATA ,SCLK ,CLR ,go[5], data_byte [5]);

// dff data4 (DATA ,SCLK ,CLR ,go[4], data_byte [4]);

// dff data3 (DATA ,SCLK ,CLR ,go[3], data_byte [3]);

// dff data2 (DATA ,SCLK ,CLR ,go[2], data_byte [2]);

// dff data1 (DATA ,SCLK ,CLR ,go[1], data_byte [1]);

// dff data0 (DATA ,SCLK ,CLR ,go[0], data_byte [0]);

assign int_SCLK = (~ START & ((~ STARTSTATE [0] | (~ STARTSTATE [1] & ~STARTSTATE [2] & ~

STARTSTATE [3] & ~STARTSTATE [4] & ~STARTSTATE [5])

| (STARTSTATE [1] & STARTSTATE [2] & ~STARTSTATE [3] & ~STARTSTATE [4] & STARTSTATE [5]))

))

| (START & (

(STATE [6] & STATE [5] & ~STATE [1]) |

(~STATE [6] & ~STATE [5] & ~STATE [4] & ~STATE [3]) |

(~STATE [5] & ~STATE [4] & ~STATE [3] & ~STATE [2]) |

(STATE [6] & STATE [4] & STATE [2] & STATE [0]) |

(STATE [6] & STATE [4] & ~STATE [3] & STATE [2]) |

(STATE [6] & STATE [4] & STATE [2] & STATE [1]) |

(STATE [5] & ~STATE [4] & STATE [2] & ~STATE [1]) |

(~STATE [6] & ~STATE [4] & ~STATE [3] & ~STATE [2] & STATE [1]) |

(~STATE [6] & ~STATE [5] & STATE [4] & STATE [3] & ~STATE [2]) |

(~STATE [6] & ~STATE [5] & ~STATE [3] & ~STATE [2] & ~STATE [1]) |

(STATE [6] & ~STATE [5] & ~STATE [4] & ~STATE [2] & STATE [1]) |

(~STATE [6] & STATE [4] & STATE [3] & ~STATE [2] & ~STATE [1]) |

(~STATE [6] & ~STATE [4] & ~STATE [3] & ~STATE [1] & STATE [0]) |

(~STATE [6] & ~STATE [4] & STATE [3] & STATE [2] & STATE [1]) |

(~STATE [6] & ~STATE [4] & STATE [3] & STATE [2] & STATE [0]) |

(STATE [6] & ~STATE [5] & ~STATE [4] & ~STATE [2] & STATE [0]) |

(STATE [5] & ~STATE [4] & STATE [3] & STATE [1] & STATE [0]) |

(STATE [5] & STATE [4] & ~STATE [3] & STATE [2] & STATE [1]) |

(STATE [5] & ~STATE [3] & STATE [2] & ~STATE [1] & STATE [0]) |

(STATE [6] & STATE [4] & ~STATE [3] & STATE [1] & STATE [0]) |

(STATE [4] & ~STATE [3] & STATE [2] & STATE [1] & STATE [0]) |

(STATE [5] & STATE [4] & STATE [2] & STATE [1] & STATE [0]) |

(STATE [6] & ~STATE [4] & STATE [3] & STATE [2] & ~STATE [1])

));

assign int_bitread = (~notCS & START & ~SCLK);

assign int_notCS = (~ START & ((~ STARTSTATE [1] & ~STARTSTATE [2] & ~STARTSTATE [3] & ~

STARTSTATE [4] & ~STARTSTATE [5])

| (( STARTSTATE [1] | STARTSTATE [2]) & ~STARTSTATE [3] & ~STARTSTATE [4] & STARTSTATE

[5])))

| (START & (~STATE [6] & ~STATE [5] & ~STATE [4] & ~STATE [3] & (~STATE [2] | ~STATE [1]))

);

assign int_START = STARTSTATE [0] & STARTSTATE [1] & STARTSTATE [2] & ~STARTSTATE [3] &

~STARTSTATE [4] & STARTSTATE [5];

assign go[7] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

~DATASTATE [3] & ~DATASTATE [2] & DATASTATE [1] & ~DATASTATE [0];

assign go[6] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

~DATASTATE [3] & ~DATASTATE [2] & DATASTATE [1] & DATASTATE [0];

assign go[5] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &
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~DATASTATE [3] & DATASTATE [2] & ~DATASTATE [1] & ~DATASTATE [0];

assign go[4] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

~DATASTATE [3] & DATASTATE [2] & ~DATASTATE [1] & DATASTATE [0];

assign go[3] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

~DATASTATE [3] & DATASTATE [2] & DATASTATE [1] & ~DATASTATE [0];

assign go[2] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

~DATASTATE [3] & DATASTATE [2] & DATASTATE [1] & DATASTATE [0];

assign go[1] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

DATASTATE [3] & ~DATASTATE [2] & ~DATASTATE [1] & ~DATASTATE [0];

assign go[0] = ~DATASTATE [7] & ~DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

DATASTATE [3] & ~DATASTATE [2] & ~DATASTATE [1] & DATASTATE [0];

assign int_byteread = ~STATE [7] & STATE [6] & STATE [5] & ~STATE [4] & ~STATE [3] & ~

STATE [2]

& STATE [1] & STATE [0] & START;

//~ DATASTATE [7] & ~ DATASTATE [6] & ~DATASTATE [5] & ~DATASTATE [4] &

//~ DATASTATE [3] & ~ DATASTATE [2] & ~DATASTATE [1] & ~DATASTATE [0];

endmodule

11.2.15 adc to iq.v – AGC, IQ Demodulator and Filter Master

‘timescale 1ns / 1ps

module adc_to_iq(input Clk , input [7:0] go , input STARTEND , input ADC_OUT_VALID ,

input SCLK , input CLR , input DATA ,

output [23:0] xI, output [23:0] xQ , output data_out_valid , input SCLKDAC , output

notSYNC , output Din0 , output Din1);

wire [1:0] S;

wire [7:0] ADC_OUT ,ADC_OUT_TR;

agc_test agc (

Clk ,

DATA ,

SCLK , ADC_OUT_VALID , go , STARTEND , CLR ,

SCLKDAC ,

notSYNC ,

Din0 , Din1 , ADC_OUT

);

assign ADC_OUT_TR [7] = ~ADC_OUT [7];

assign ADC_OUT_TR [6:0] = ADC_OUT [6:0];

IQ_LPF iqlpf (ADC_OUT_TR , Clk , S, ADC_OUT_VALID , xI , xQ, data_out_valid);

// IQ internal state counter (S)

S_counter scounter (ADC_OUT_VALID ,STARTEND ,0,S);

endmodule

11.2.16 agc test.v – AGC Master

‘timescale 1ns / 1ps

// ////////////////////////////////////////////////////////////////////////////////

// Controlling DAC which controls VGA. To determine value , take sum over one

// of incoming ADC samples. Get 0->24 dB by moving input voltage between 0
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// and 1.4 V or so. We chain two to get 0-48 dB with two DACs.

//

// ////////////////////////////////////////////////////////////////////////////////

module agc_test(

input clk ,

input adc_in ,

input SCLK , input byte_read , input [7:0] go , input START , input CLR ,

input SCLKDAC ,

output notSYNC ,

output Din0 , output Din1 , output [7:0] data_byte_raw , output reg [15:0]

total , output reg [15:0] sum

);

wire [7:0] go, wrango ,data_byte ,data_byte_raw;

wire byte_read;

wire DACtime;

wire DACtimed;

reg SCLKtime = 0;

wire CLR;

reg [15:0] sum = 0;

reg [15:0] total = 0;

reg [32:0] dintemp =

{0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0};

wire [4:0] STATE;

wire notSYNCd;

wire [7:0] k;

wire trigger; wire triggerd;

wire keepnotSYNCalive;

dff DAC (DACtimed , clk , 0 , 1, DACtime);

dff notS (notSYNCd , clk , 0, 1, notSYNC);

dff trig (triggerd , clk , 0, 1, trigger);

dff knsa (1,!SCLKDAC ,DACtime ,1, keepnotSYNCalive);

c_counter_binary_4 DACSTATE (SCLKDAC , !notSYNC , !DACtime , STATE);

c_counter_binary_5 CLKIN (byte_read || (trigger & !SCLKDAC), !DACtime , 0, k);

assign Din0 = dintemp [16 - STATE [3:0]];

assign Din1 = dintemp [32 -STATE [3:0]];

adc_wrangler rango ( adc_in , SCLK , CLR , go , data_byte_raw);

abs abval (data_byte_raw ,data_byte);

always @(posedge byte_read & !DACtime)

begin

if(k<49)

begin

sum <= sum+data_byte;

end

else

begin

total <= sum;
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sum <= 0;

end

end

always @(posedge DACtime)

begin

if(total < 3150 )

begin

if(dintemp [11:4] >= 164)

begin

if (dintemp [27:20] < 164)

begin

dintemp [27:20] <= dintemp [27:20] + 1;

end

end

else

begin

dintemp [11:4] <= dintemp [11:4] + 1;

end

end

else if(total > 4550)

begin

if(dintemp [27:20] <= 92)

begin

if (dintemp [11:4] > 92)

begin

dintemp [11:4] <= dintemp [11:4] - 1;

end

end

else

begin

dintemp [27:20] <= dintemp [27:20] - 1;

end

end

end

assign triggerd = STATE [4] & STATE [0];

assign DACtimed = (k == 50) & !(STATE [4] & STATE [0]);

assign notSYNCd = (STATE [4] & STATE [0]) || (STATE == 5’b0 & !DACtime) ||

keepnotSYNCalive;

endmodule

11.2.17 adc wrangler.v – Retrieves Bytes from the ADC

‘timescale 1ns / 1ps

module adc_wrangler( input wire DATA , input wire SCLK , input wire CLR , input [7:0]

go, output [7:0] data_byte

);

dff data7 (DATA ,SCLK ,CLR ,go[7], data_byte [7]);

dff data6 (DATA ,SCLK ,CLR ,go[6], data_byte [6]);

dff data5 (DATA ,SCLK ,CLR ,go[5], data_byte [5]);

dff data4 (DATA ,SCLK ,CLR ,go[4], data_byte [4]);
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dff data3 (DATA ,SCLK ,CLR ,go[3], data_byte [3]);

dff data2 (DATA ,SCLK ,CLR ,go[2], data_byte [2]);

dff data1 (DATA ,SCLK ,CLR ,go[1], data_byte [1]);

dff data0 (DATA ,SCLK ,CLR ,go[0], data_byte [0]);

endmodule

11.2.18 abs.v – Absolute Value of 2’s Complement Number

‘timescale 1ns / 1ps

module abs(

input [7:0] data_byte_raw ,

output [7:0] data_byte

);

wire [7:0] m128;

wire [7:0] n;

assign m128 [7] = ~data_byte_raw [7];

assign m128 [6:0] = data_byte_raw [6:0];

negate neg (m128 ,n);

byte_mux bm (m128 ,n,m128[7], data_byte);

endmodule

11.2.19 byte mux.v – 8-Bit Multiplexer

‘timescale 1ns / 1ps

module mux(

input I0 ,

input I1 ,

input S,

output OUT

);

assign OUT = (~S & I0) | (S & I1);

endmodule

11.2.20 mux.v – One-Bit Multiplexer

‘timescale 1ns / 1ps

module mux(

input I0 ,

input I1 ,

input S,

output OUT

);

assign OUT = (~S & I0) | (S & I1);

endmodule

11.2.21 IQ LPF.v – IQ Demodulator and LPF Master

‘timescale 1ns / 1ps

module IQ_LPF(

input [7:0] x,
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input Clk ,

input [1:0] S,

input data_in_valid ,

output [23:0] xI,

output [23:0] xQ,

output data_out_valid

);

wire [7:0] Ipath;

wire [7:0] Qpath;

wire data_ready;

IQdemod IQ_0 (x,S,Ipath ,Qpath);

fir_compiler_0 filter (Clk , data_in_valid ,data_ready ,

{Ipath ,Qpath},data_out_valid ,{xI,xQ});

endmodule

11.2.22 IQdemod.v – IQ Demodulator

‘timescale 1ns / 1ps

module IQdemod(

input [7:0] x,

input [1:0] S,

output [7:0] xI,

output [7:0] xQ

);

wire [7:0] xIroute , xQroute;

wire [7:0] I0,I1,Q0 ,Q1;

wire [7:0] negI1 ,negQ0;

byte_demux demux_0 (x,S[0],xIroute ,xQroute);

byte_demux demux_I (xIroute ,S[1],I0 ,I1);

byte_demux demux_Q (xQroute ,S[1],Q0 ,Q1);

negate negate_I (I1 ,negI1);

negate negate_Q (Q0 ,negQ0);

byte_mux mux_I (I0,negI1 ,S[1],xI);

byte_mux mux_Q (negQ0 ,Q1,S[1],xQ);

endmodule

11.2.23 byte demux.v – 8-Bit Demultiplexer

‘timescale 1ns / 1ps

module byte_demux(

input [7:0] I,

input S,

output [7:0] O0,

output [7:0] O1

);

demux demux_0 (I[0],S,O0[0],O1[0]);

demux demux_1 (I[1],S,O0[1],O1[1]);
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demux demux_2 (I[2],S,O0[2],O1[2]);

demux demux_3 (I[3],S,O0[3],O1[3]);

demux demux_4 (I[4],S,O0[4],O1[4]);

demux demux_5 (I[5],S,O0[5],O1[5]);

demux demux_6 (I[6],S,O0[6],O1[6]);

demux demux_7 (I[7],S,O0[7],O1[7]);

endmodule

11.2.24 demux.v – One-Bit Demultiplexer

‘timescale 1ns / 1ps

module demux(

input I,

input S,

output O0,

output O1

);

assign O0 = ~S & I;

assign O1 = S & I;

endmodule
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12 Appendix – SDK Code

12.0.1 main.cc

#include "stdio.h"

#include "xparameters.h"

#include "xil_io.h"

#include "xbasic_types.h"

#include "unistd.h"

#include <string >

#include <math.h>

#include <iostream >

const int FRAC_BITS = 43;

using namespace std;

void printBits(size_t const size , void const * const ptr);

void print2Bytes(size_t const size , void const * const ptr);

void sprintBits(string * str , size_t const size , void const * const ptr);

void sprint2Bytes(string * str , size_t const size , void const * const ptr);

int bitVal(char bit);

float str2val(char bin[], int fracBits);

void printNums(float *valsR1 , float *valsC1 , int AVG);

void toNums(const char r1_0[], const char r1_1[], const char r1_2[], const char r1_3

[],

const char r1_4[], const char r1_5[], const char r1_6[], const char r1_7[],

const char r1_8[], const char r1_9[], float *valsR1 , float *valsC1);

int main()

{

int AVG = 1;

int i = 0; int j = 0; // i counts array 1 R samples , j counts array 2 R samples

u32 zero ,one ,two ,three ,four ,five ,six , seven ,

eight , nine , ten , eleven , twelve , thirteen ,

fourteen ,fifteen ,sixteen ,seventeen , eighteen ,

nineteen , twenty , twentyone , twentytwo , twentythree , twentyfour ,

twentyfive , twentysix , twentyseven , twentyeight , twentynine ,

thirty , thirtyone , thirtytwo , thirtythree , thirtyfour ,

MAGIC;

u32 zero2 ,one2 ,two2 ,three2 ,four2 ,five2 ,six2 , seven2 ,

eight2 , nine2 , ten2 , eleven2 , twelve2 , thirteen2 ,

fourteen2 ,fifteen2 ,sixteen2 ,seventeen2 , eighteen2 ,

nineteen2 , twenty2 , twentyone2 , twentytwo2 , twentythree2 , twentyfour2 ,

twentyfive2 , twentysix2 , twentyseven2 , twentyeight2 , twentynine2 ,

thirty2 , thirtyone2 , thirtytwo2 , thirtythree2 , thirtyfour2 ,

MAGIC2;

xil_printf("Hello baby!\n");

// Read the secret message 140 offset from baseaddr 0 x43C00000

float r1[] = {0,0,0,0,0,0,0,0,0,0};

float c1[] = {0,0,0,0,0,0,0,0,0,0};

float r2[] = {0,0,0,0,0,0,0,0,0,0};

float c2[] = {0,0,0,0,0,0,0,0,0,0};
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while(TRUE){

string R11 = "";string R12 = "";string R13 = "";string R14 = "";

string R22 = "";string R23 = "";string R24 = "";

string R33 = "";string R34 = "";

string R44 = "";

string R11_2 = "";string R12_2 = "";string R13_2 = "";string R14_2 = "";

string R22_2 = "";string R23_2 = "";string R24_2 = "";

string R33_2 = "";string R34_2 = "";

string R44_2 = "";

// Xil_Out32 ( XPAR_PL_AUTOCOR_0_S00_AXI_BASEADDR ,0003);

zero = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR);

one = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 4);

two = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 8);

three = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 12);

four = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 16);

five = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 20);

six = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 24);

seven = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 28);

eight = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 32);

nine = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 36);

ten = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 40);

eleven = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 44);

twelve = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 48);

thirteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 52);

fourteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 56);

fifteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 60);

sixteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 64);

seventeen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 68);

eighteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 72);

nineteen = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 76);

twenty = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 80);

twentyone = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 84);

twentytwo = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 88);

twentythree = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 92);

twentyfour = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 96);

twentyfive = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 100);

twentysix = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 104);

twentyseven = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 108);

twentyeight = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 112);

twentynine = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 116);

thirty = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 120);

thirtyone = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 124);

thirtytwo = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 128);

thirtythree = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 132);

thirtyfour = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 136);

MAGIC = Xil_In32(XPAR_RAGC_0_S00_AXI_BASEADDR + 140);

zero2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR);

one2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 4);

two2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 8);

three2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 12);

four2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 16);

five2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 20);

six2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 24);

76



seven2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 28);

eight2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 32);

nine2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 36);

ten2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 40);

eleven2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 44);

twelve2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 48);

thirteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 52);

fourteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 56);

fifteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 60);

sixteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 64);

seventeen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 68);

eighteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 72);

nineteen2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 76);

twenty2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 80);

twentyone2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 84);

twentytwo2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 88);

twentythree2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 92);

twentyfour2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 96);

twentyfive2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 100);

twentysix2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 104);

twentyseven2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 108);

twentyeight2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 112);

twentynine2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 116);

thirty2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 120);

thirtyone2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 124);

thirtytwo2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 128);

thirtythree2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 132);

thirtyfour2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 136);

MAGIC2 = Xil_In32(XPAR_RAGC_1_S00_AXI_BASEADDR + 140);

if(( MAGIC == 3) & (i<AVG)){

sprintBits (&R11 ,sizeof(three) -2,&three);

sprintBits (&R11 ,sizeof(two),&two);

sprintBits (&R11 ,sizeof(one),&one);

sprintBits (&R11 ,sizeof(zero) ,&zero);

// xil_printf (" R11 = %s \n", R11.c_str ());

sprintBits (&R12 , sizeof(six),&six);

sprintBits (&R12 ,sizeof(five) ,&five);

sprintBits (&R12 ,sizeof(four) ,&four);

sprint2Bytes (&R12 ,sizeof(three) ,&three);

// xil_printf (" R12 = %s \n", R12.c_str ());

sprintBits (&R13 ,sizeof(ten) -2,&ten);

sprintBits (&R13 ,sizeof(nine) ,&nine);

sprintBits (&R13 ,sizeof(eight),&eight);

sprintBits (&R13 ,sizeof(seven),&seven);

// xil_printf (" R13 = %s \n", R13.c_str ());

sprintBits (&R14 , sizeof(thirteen),&thirteen);

sprintBits (&R14 , sizeof(twelve) ,&twelve);

sprintBits (&R14 , sizeof(eleven) ,&eleven);

sprint2Bytes (&R14 , sizeof(ten),&ten);
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// xil_printf (" R14 = %s \n", R14.c_str ());

sprintBits (&R22 , sizeof(seventeen) -2,&seventeen);

sprintBits (&R22 , sizeof(sixteen) ,&sixteen);

sprintBits (&R22 , sizeof(fifteen) ,&fifteen);

sprintBits (&R22 , sizeof(fourteen),&fourteen);

// xil_printf (" R22 = %s \n", R22.c_str ());

sprintBits (&R23 , sizeof(twenty) ,&twenty);

sprintBits (&R23 , sizeof(nineteen),&nineteen);

sprintBits (&R23 , sizeof(eighteen),&eighteen);

sprint2Bytes (&R23 , sizeof(seventeen),&seventeen);

// xil_printf (" R23 = %s \n", R23.c_str ());

sprintBits (&R24 , sizeof(twentyfour) -2,&twentyfour);

sprintBits (&R24 , sizeof(twentythree) ,&twentythree);

sprintBits (&R24 , sizeof(twentytwo),&twentytwo);

sprintBits (&R24 , sizeof(twentyone),&twentyone);

// xil_printf (" R24 = %s \n", R24.c_str ());

sprintBits (&R33 , sizeof(twentyseven) ,&twentyseven);

sprintBits (&R33 , sizeof(twentysix),&twentysix);

sprintBits (&R33 , sizeof(twentyfive),&twentyfive);

sprint2Bytes (&R33 , sizeof(twentyfour),&twentyfour);

// xil_printf (" R33 = %s \n", R33.c_str ());

sprintBits (&R34 , sizeof(thirtyone) -2,&thirtyone);

sprintBits (&R34 , sizeof(thirty) ,&thirty);

sprintBits (&R34 , sizeof(twentynine),&twentynine);

sprintBits (&R34 , sizeof(twentyeight) ,&twentyeight);

// xil_printf (" R34 = %s \n", R34.c_str ());

sprintBits (&R44 , sizeof(thirtyfour),&thirtyfour);

sprintBits (&R44 , sizeof(thirtythree) ,&thirtythree);

sprintBits (&R44 , sizeof(thirtytwo),&thirtytwo);

sprint2Bytes (&R44 , sizeof(thirtyone),&thirtyone);

// xil_printf (" R44 = %s \n", R44.c_str ());

toNums(R11.c_str(),R12.c_str (),R13.c_str(),R14.c_str(),R22.c_str(),R23.c_str(),

R24.c_str(),

R33.c_str(),R34.c_str (),R44.c_str(),r1 ,c1);

i++;

}

if(( MAGIC2 == 3) & (j<AVG)){

sprintBits (&R11_2 ,sizeof(three2) -2,&three2);

sprintBits (&R11_2 ,sizeof(two2),&two2);

sprintBits (&R11_2 ,sizeof(one2),&one2);
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sprintBits (&R11_2 ,sizeof(zero2),&zero2);

// xil_printf (" R11 = %s \n", R11.c_str ());

sprintBits (&R12_2 , sizeof(six2) ,&six2);

sprintBits (&R12_2 ,sizeof(five2),&five2);

sprintBits (&R12_2 ,sizeof(four2),&four2);

sprint2Bytes (&R12_2 ,sizeof(three2),&three2);

// xil_printf (" R12 = %s \n", R12.c_str ());

sprintBits (&R13_2 ,sizeof(ten2) -2,&ten2);

sprintBits (&R13_2 ,sizeof(nine2),&nine2);

sprintBits (&R13_2 ,sizeof(eight2) ,&eight2);

sprintBits (&R13_2 ,sizeof(seven2) ,&seven2);

// xil_printf (" R13 = %s \n", R13.c_str ());

sprintBits (&R14_2 , sizeof(thirteen2) ,&thirteen2);

sprintBits (&R14_2 , sizeof(twelve2),&twelve2);

sprintBits (&R14_2 , sizeof(eleven2),&eleven2);

sprint2Bytes (&R14_2 , sizeof(ten2) ,&ten2);

// xil_printf (" R14 = %s \n", R14.c_str ());

sprintBits (&R22_2 , sizeof(seventeen2) -2,&seventeen2);

sprintBits (&R22_2 , sizeof(sixteen2),&sixteen2);

sprintBits (&R22_2 , sizeof(fifteen2),&fifteen2);

sprintBits (&R22_2 , sizeof(fourteen2) ,&fourteen2);

// xil_printf (" R22 = %s \n", R22.c_str ());

sprintBits (&R23_2 , sizeof(twenty2),&twenty2);

sprintBits (&R23_2 , sizeof(nineteen2) ,&nineteen2);

sprintBits (&R23_2 , sizeof(eighteen2) ,&eighteen2);

sprint2Bytes (&R23_2 , sizeof(seventeen2) ,&seventeen2);

// xil_printf (" R23 = %s \n", R23.c_str ());

sprintBits (&R24_2 , sizeof(twentyfour2) -2,&twentyfour2);

sprintBits (&R24_2 , sizeof(twentythree2),&twentythree2);

sprintBits (&R24_2 , sizeof(twentytwo2),&twentytwo2);

sprintBits (&R24_2 , sizeof(twentyone2),&twentyone2);

// xil_printf (" R24 = %s \n", R24.c_str ());

sprintBits (&R33_2 , sizeof(twentyseven2),&twentyseven2);

sprintBits (&R33_2 , sizeof(twentysix2),&twentysix2);

sprintBits (&R33_2 , sizeof(twentyfive2),&twentyfive2);

sprint2Bytes (&R33_2 , sizeof(twentyfour2),&twentyfour2);

// xil_printf (" R33 = %s \n", R33.c_str ());

sprintBits (&R34_2 , sizeof(thirtyone2) -2,&thirtyone2);

sprintBits (&R34_2 , sizeof(thirty2),&thirty2);

sprintBits (&R34_2 , sizeof(twentynine2),&twentynine2);

sprintBits (&R34_2 , sizeof(twentyeight2),&twentyeight2);
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// xil_printf (" R34 = %s \n", R34.c_str ());

sprintBits (&R44_2 , sizeof(thirtyfour2),&thirtyfour2);

sprintBits (&R44_2 , sizeof(thirtythree2),&thirtythree2);

sprintBits (&R44_2 , sizeof(thirtytwo2),&thirtytwo2);

sprint2Bytes (&R44_2 , sizeof(thirtyone2),&thirtyone2);

// xil_printf (" R44 = %s \n", R44.c_str ());

toNums(R11_2.c_str (),R12_2.c_str (),R13_2.c_str (),R14_2.c_str (),R22_2.c_str ()

,R23_2.c_str (),R24_2.c_str (),

R33_2.c_str (),R34_2.c_str (),R44_2.c_str (),r2,c2);

j++;

}

if ((i>=AVG) & (j>=AVG))

{

printNums(r1,c1 ,AVG);printNums(r2 ,c2,AVG);cout << "\r\n";

for(int k = 0;k<10;k++)

{

r1[k] = 0;

c1[k] = 0;

r2[k] = 0;

c2[k] = 0;

}

i=0; j=0;

}

}

return 0;

}

void sprintBits(string * str , size_t const size , void const * const ptr)

{

unsigned char *b = (unsigned char*) ptr;

unsigned char byte;

int i, j;

for (i=size -1;i>=0;i--)

{

for (j=7;j>=0;j--)

{

byte = (b[i] >> j) & 1;

(*str).append(to_string(byte));

}

}

}

void sprint2Bytes(string * str , size_t const size , void const * const ptr)

{

unsigned char *b = (unsigned char*) ptr;

unsigned char byte;

int i, j;

i = size -1;

for (i=size -1;i>=size -2;i--)

{
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for (j=7;j>=0;j--)

{

byte = (b[i] >> j) & 1;

(*str).append(to_string(byte));

}

}

// xil_printf ("\n");

}

void printNums(float *valsR1 , float *valsC1 , int AVG)

{

float favg = (float) AVG;

int is[] = {1,1,1,1,2,2,2,3,3,4};

int js[] = {1,2,3,4,2,3,4,3,4,4};

for(int i=0; i<10; i++){

cout << fixed << "R" << is[i] <<""<<js[i]<< " = " << valsR1[i]/favg << "

+" << valsC1[i]/favg <<"j;";

}

//cout <<"\r\n";

}

float str2val(char bin[], int fracBits){

// Takes a string representing a 2s complement binary number and converts to a

float.

float val = 0; // Value of binary string

int len = strlen(bin) -1; // How many bits to convert

int bit; // Bit value: either 0 or 1

if(bin[0] == ’0’){ // Positive value

for (int i=len -1; i>=1; i--){

bit = bitVal(bin[i]);

val += bit*pow(2,len -1-i);

}

}

else{ // Negative value

for (int i=len -1; i>=1; i--){

bit = -(bitVal(bin[i]) -1); //2s complement flip bits

val += bit*pow(2,len -1-i);

}

val ++; //2s complement increment

val *= -1; // Negate

}

val /= pow(2,fracBits); // Scale appropriately

return val;

}

int bitVal(char bit){

// Takes a ’0’ or ’1’ char and returns as int.

int val;

if(bit == ’0’){

val = 0;

}

else{
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val = 1;

}

return val;

}

void toNums(const char r1_0[], const char r1_1[], const char r1_2[], const char r1_3

[],

const char r1_4[], const char r1_5[], const char r1_6[], const char r1_7[],

const char r1_8[], const char r1_9[], float *valsR1 , float *valsC1)

{

int len = strlen(r1_0);

// Break up char arrays into real and imaginary arrays

char rr1_0[len/2+1], rc1_0[len /2+1];

char rr1_1[len/2+1], rc1_1[len /2+1];

char rr1_2[len/2+1], rc1_2[len /2+1];

char rr1_3[len/2+1], rc1_3[len /2+1];

char rr1_4[len/2+1], rc1_4[len /2+1];

char rr1_5[len/2+1], rc1_5[len /2+1];

char rr1_6[len/2+1], rc1_6[len /2+1];

char rr1_7[len/2+1], rc1_7[len /2+1];

char rr1_8[len/2+1], rc1_8[len /2+1];

char rr1_9[len/2+1], rc1_9[len /2+1];

for(int i=0; i<len/2; i++){

rr1_0[i] = r1_0[i]; rc1_0[i] = r1_0[i+len /2];

rr1_1[i] = r1_1[i]; rc1_1[i] = r1_1[i+len /2];

rr1_2[i] = r1_2[i]; rc1_2[i] = r1_2[i+len /2];

rr1_3[i] = r1_3[i]; rc1_3[i] = r1_3[i+len /2];

rr1_4[i] = r1_4[i]; rc1_4[i] = r1_4[i+len /2];

rr1_5[i] = r1_5[i]; rc1_5[i] = r1_5[i+len /2];

rr1_6[i] = r1_6[i]; rc1_6[i] = r1_6[i+len /2];

rr1_7[i] = r1_7[i]; rc1_7[i] = r1_7[i+len /2];

rr1_8[i] = r1_8[i]; rc1_8[i] = r1_8[i+len /2];

rr1_9[i] = r1_9[i]; rc1_9[i] = r1_9[i+len /2];

}

int t = len/2 + 1;

rr1_0[t] = ’\0’; rc1_0[t] = ’\0’;

rr1_1[t] = ’\0’; rc1_1[t] = ’\0’;

rr1_2[t] = ’\0’; rc1_2[t] = ’\0’;

rr1_3[t] = ’\0’; rc1_3[t] = ’\0’;

rr1_4[t] = ’\0’; rc1_4[t] = ’\0’;

rr1_5[t] = ’\0’; rc1_5[t] = ’\0’;

rr1_6[t] = ’\0’; rc1_6[t] = ’\0’;

rr1_7[t] = ’\0’; rc1_7[t] = ’\0’;

rr1_8[t] = ’\0’; rc1_8[t] = ’\0’;

rr1_9[t] = ’\0’; rc1_9[t] = ’\0’;

float Rr1_0 = str2val(rr1_0 , FRAC_BITS);

float Rr1_1 = str2val(rr1_1 , FRAC_BITS);

float Rr1_2 = str2val(rr1_2 , FRAC_BITS);

float Rr1_3 = str2val(rr1_3 , FRAC_BITS);

float Rr1_4 = str2val(rr1_4 , FRAC_BITS);

float Rr1_5 = str2val(rr1_5 , FRAC_BITS);

float Rr1_6 = str2val(rr1_6 , FRAC_BITS);

float Rr1_7 = str2val(rr1_7 , FRAC_BITS);

float Rr1_8 = str2val(rr1_8 , FRAC_BITS);
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float Rr1_9 = str2val(rr1_9 , FRAC_BITS);

//R1 imagianry part

float Rc1_0 = str2val(rc1_0 , FRAC_BITS);

float Rc1_1 = str2val(rc1_1 , FRAC_BITS);

float Rc1_2 = str2val(rc1_2 , FRAC_BITS);

float Rc1_3 = str2val(rc1_3 , FRAC_BITS);

float Rc1_4 = str2val(rc1_4 , FRAC_BITS);

float Rc1_5 = str2val(rc1_5 , FRAC_BITS);

float Rc1_6 = str2val(rc1_6 , FRAC_BITS);

float Rc1_7 = str2val(rc1_7 , FRAC_BITS);

float Rc1_8 = str2val(rc1_8 , FRAC_BITS);

float Rc1_9 = str2val(rc1_9 , FRAC_BITS);

// Complex and Real opposite of what you would expect cause Karol ’s an idiot

valsC1 [0] = valsC1 [0] + Rr1_0;

valsC1 [1] = valsC1 [1] + Rr1_1;

valsC1 [2] = valsC1 [2] + Rr1_2;

valsC1 [3] = valsC1 [3] + Rr1_3;

valsC1 [4] = valsC1 [4] + Rr1_4;

valsC1 [5] = valsC1 [5] + Rr1_5;

valsC1 [6] = valsC1 [6] + Rr1_6;

valsC1 [7] = valsC1 [7] + Rr1_7;

valsC1 [8] = valsC1 [8] + Rr1_8;

valsC1 [9] = valsC1 [9] + Rr1_9;

valsR1 [0] = valsR1 [0] + Rc1_0;

valsR1 [1] = valsR1 [1] + Rc1_1;

valsR1 [2] = valsR1 [2] + Rc1_2;

valsR1 [3] = valsR1 [3] + Rc1_3;

valsR1 [4] = valsR1 [4] + Rc1_4;

valsR1 [5] = valsR1 [5] + Rc1_5;

valsR1 [6] = valsR1 [6] + Rc1_6;

valsR1 [7] = valsR1 [7] + Rc1_7;

valsR1 [8] = valsR1 [8] + Rc1_8;

valsR1 [9] = valsR1 [9] + Rc1_9;

// int is[] = {1,1,1,1,2,2,2,3,3,4};

// int js[] = {1,2,3,4,2,3,4,3,4,4};

// for(int i=0; i <10; i++){

// cout << fixed << "R" << is[i] <<""<<js[i]<< " = " << valsR1[i] << "+" <<

valsC1[i] <<"j;";

//}

//cout <<"\r\n";

}
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13 Appendix – Host Computer Code

This appendix contains all C++ code and C] implemented on the host computer.

13.1 Unity

13.1.1 MyMessageListener.cs – Read Serial Messages from FPGA

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class MyMessageListener : MonoBehaviour

{

public string FPGAin;

// Use this for initialization

void Start()

{

}

// Update is called once per frame

void Update ()

{

}

// Invoked when a line of data is received from the serial device.

void OnMessageArrived(string msg)

{

// Debug.Log (" Arrived: " + msg);

FPGAin = msg;

// Debug.Log (" Arrived: " + FPGAin);

}

// Invoked when a connect/ disconnect event occurs. The parameter ’success ’

// will be ’true ’ upon connection , and ’false ’ upon disconnection or

// failure to connect.

void OnConnectionEvent(bool success)

{

Debug.Log(success ? "Device connected" : "Device disconnected");

}

}

13.1.2 CameraMove.cs – Camera Control

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class CameraMove : MonoBehaviour

{

private readonly float rSpd = 10.0f;

private readonly float tSpd = 0.5f;

// Start is called before the first frame update

void Start()

{

}

private float x;

private float y;

private Vector3 rotateValue;
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void Update ()

{

if (Input.GetKey(KeyCode.Mouse0))

{

y = Input.GetAxis("Mouse X");

x = Input.GetAxis("Mouse Y");

rotateValue = new Vector3(x * -rSpd , y * rSpd , 0);

transform.eulerAngles = transform.eulerAngles - rotateValue;

}

if (Input.GetKey(KeyCode.UpArrow))

{

transform.Translate(Vector3.forward * tSpd) ;

}

if (Input.GetKey(KeyCode.DownArrow))

{

transform.Translate(Vector3.forward * -tSpd);

}

if (Input.GetKey(KeyCode.LeftArrow))

{

transform.Translate(Vector3.right * -tSpd);

}

if (Input.GetKey(KeyCode.RightArrow))

{

transform.Translate(Vector3.right * tSpd);

}

if (Input.GetKey(KeyCode.Space))

{

transform.position = new Vector3(0, 0.5f, -10.0f); ;

}

}

}

13.1.3 PlayerController.cs – Transmitter Location Update

using System;

using System.Runtime.InteropServices;

using UnityEngine;

public class PlayerController : MonoBehaviour

{

[DllImport("TestEigenDLL 1", EntryPoint = "R2LOC")]

public static extern void R2LOC(

float r1_0 , float r1_1 , float r1_2 , float r1_3 , float r1_4 ,

float r1_5 , float r1_6 , float r1_7 , float r1_8 , float r1_9 ,

float r2_0 , float r2_1 , float r2_2 , float r2_3 , float r2_4 ,

float r2_5 , float r2_6 , float r2_7 , float r2_8 , float r2_9 ,

float i1_0 , float i1_1 , float i1_2 , float i1_3 , float i1_4 ,

float i1_5 , float i1_6 , float i1_7 , float i1_8 , float i1_9 ,

float i2_0 , float i2_1 , float i2_2 , float i2_3 , float i2_4 ,

float i2_5 , float i2_6 , float i2_7 , float i2_8 , float i2_9 ,

float[] angles1 , float [] angles2 , float[] xyz);

private Transform t;

private MyMessageListener ml;

private int num = 0;

public int AVG = 1;
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void Start()

{

t = GetComponent <Transform >();

ml = gameObject.GetComponentInChildren <MyMessageListener >();

}

void Update ()

{

// string test = "R11 = 0.01+1j;R12 = 0.01+1j;R13 = 0.02+2j;R14 = 0.03+3j;R22

= 0.05+0j;R23 = 0.08+4j;R24 = 0.13+5j;R33 = 0.21+0j;R34 = 0.34+6j;R44 =

0.55+0j;";

float [] real = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; float [] imaginary = { 0,

0, 0, 0, 0, 0, 0, 0, 0, 0 };

float[] real2 = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; float [] imaginary2 = { 0,

0, 0, 0, 0, 0, 0, 0, 0, 0 };

string test = ml.FPGAin;

//if (Input.GetKey(KeyCode.P))

//{

int ind = 6;

for (int i = 0; i < 10; i++)

{

string tempR = "";

while (test[ind] != ’+’)

{

tempR = tempR + test[ind];

ind ++;

}

real[i] = real[i] + (float)Convert.ToDouble(tempR)/AVG;

ind ++;

string tempI = "";

while (test[ind] != ’j’)

{

tempI = tempI + test[ind];

ind ++;

}

imaginary[i] = imaginary[i] + (float)Convert.ToDouble(tempI)/AVG;

ind = ind + 8;

}

// Debug.Log (" R11 = " + real [0] + "+" + imaginary [0] + "j");

// float [] valsR1 = { .3650F, .0364F, .2522F, .0207F, .3533F, .0427F,

.2515F, .3450F, .0305F, .3421F };

// float [] valsC1 = { 0.000F, -.2565F, -.0124F, -.2541F, .0000F, .2467F,

-.0100F, .0000F, -.2384F, .0000F };

// float [] valsR2 = { .3650F, .0364F, .2522F, .0207F, .3533F, .0427F,

.2515F, .3450F, .0305F, .3421F };

// float [] valsC2 = { .0000F, -.2565F, -.0124F, -.2541F, .0000F, .2467F,

-.0100F, .0000F, -.2384F, .0000F };

for (int i = 0; i < 10; i++)

{

string tempR = "";

while (test[ind] != ’+’)

{

tempR = tempR + test[ind];

ind ++;

}

real2[i] = real2[i] + (float)Convert.ToDouble(tempR) / AVG;

86



ind ++;

string tempI = "";

while (test[ind] != ’j’)

{

tempI = tempI + test[ind];

ind ++;

}

imaginary2[i] = imaginary2[i] + (float)Convert.ToDouble(tempI) / AVG

;

ind = ind + 8;

}

// Debug.Log (" R11 = " + real2 [0] + "+" + imaginary2 [0] + "j");

float[] angles1 = { 0, 0 }; float[] angles2 = { 0, 0 }; float [] xyz = { 0,

0, 0 };

if (num == AVG)

{

num = 0;

R2LOC(real[0], real[1], real[2], real[3], real[4], real[5], real[6],

real[7], real[8], real[9],

real2[0], real2 [1], real2[2], real2 [3], real2[4], real2 [5], real2[6], real2[7],

real2[8], real2 [9],

imaginary [0], imaginary [1], imaginary [2], imaginary [3], imaginary [4], imaginary

[5], imaginary [6], imaginary [7], imaginary [8], imaginary [9],

imaginary2 [0], imaginary2 [1], imaginary2 [2], imaginary2 [3], imaginary2 [4],

imaginary2 [5], imaginary2 [6], imaginary2 [7], imaginary2 [8], imaginary2 [9],

angles1 , angles2 , xyz);

// angles1 [0] = angles1 [0] ;

if (Input.GetKey(KeyCode.A))

{

Debug.Log("Theta: " + angles1 [0] * 180 / 3.14159 + ", Phi: " +

angles1 [1] * 180 / 3.14159);

t.position = new Vector3 (5 * Mathf.Sin(angles1 [1]) * Mathf.Cos(

angles1 [0]), 5 * Mathf.Cos(angles1 [1]), 5 * Mathf.Sin(angles1

[1]) * Mathf.Sin(angles1 [0]));

}

else if (Input.GetKey(KeyCode.B))

{

Debug.Log("Theta: " + angles2 [0] * 180 / 3.14159 + ", Phi: " +

angles2 [1] * 180 / 3.14159);

t.position = new Vector3 (5 * Mathf.Sin(angles2 [1]) * Mathf.Cos(

angles2 [0]), 5 * Mathf.Cos(angles2 [1]), 5 * Mathf.Sin(angles2

[1]) * Mathf.Sin(angles2 [0]));

}

else

{

Debug.Log("x: " + xyz[0] + ", y: " + xyz[2] + ", z: " + xyz [1]);

t.position = new Vector3(xyz[0], xyz[2], xyz [1]);

}

}

num ++;

//}

}

}
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13.2 C++ DLL

13.2.1 TestEigenDLL.cpp – Declaration of Localization Function

#include "stdafx.h"

#include "TestEigenDll.h"

void R2LOC(

float r1_0 , float r1_1 , float r1_2 , float r1_3 , float r1_4 ,

float r1_5 , float r1_6 , float r1_7 , float r1_8 , float r1_9 ,

float r2_0 , float r2_1 , float r2_2 , float r2_3 , float r2_4 ,

float r2_5 , float r2_6 , float r2_7 , float r2_8 , float r2_9 ,

float i1_0 , float i1_1 , float i1_2 , float i1_3 , float i1_4 ,

float i1_5 , float i1_6 , float i1_7 , float i1_8 , float i1_9 ,

float i2_0 , float i2_1 , float i2_2 , float i2_3 , float i2_4 ,

float i2_5 , float i2_6 , float i2_7 , float i2_8 , float i2_9 ,

float *angles1 , float *angles2 , float *xyz)

{

float array1[ANTS ][3]; // ANTS antennas , (x,y,z) coordinates

float array2[ANTS ][3]; //^ but for array 2

// Array 1

array1 [0][0] = 0.0*D;

array1 [0][1] = 0.0*D;

array1 [0][2] = 0.0;

array1 [1][0] = 1.0*D;

array1 [1][1] = 0.0*D;

array1 [1][2] = 0.0;

array1 [2][0] = 0.0*D;

array1 [2][1] = 1.0*D;

array1 [2][2] = 0.0;

array1 [3][0] = 1.0*D;

array1 [3][1] = 1.0*D;

array1 [3][2] = 0.0;

// Array 2

array2 [0][0] = 2.0;

array2 [0][1] = 0.0;

array2 [0][2] = 0.0;

array2 [1][0] = 2.0 + 1.0*D;

array2 [1][1] = 0.0;

array2 [1][2] = 0.0;

array2 [2][0] = 2.0;

array2 [2][1] = 1.0*D;

array2 [2][2] = 0.0;

array2 [3][0] = 2.0 + 1.0*D;

array2 [3][1] = 1.0*D;

array2 [3][2] = 0.0;

float *a1 , *a2;

a1 = new float[ANTS * 3];
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a2 = new float[ANTS * 3];

a1 = &array1 [0][0];

a2 = &array2 [0][0];

float valsR1 [] = { r1_0 , r1_1 , r1_2 , r1_3 , r1_4 ,

r1_5 , r1_6 , r1_7 , r1_8 , r1_9 };

float valsC1 [] = { i1_0 , i1_1 , i1_2 , i1_3 , i1_4 ,

i1_5 , i1_6 , i1_7 , i1_8 , i1_9 };

float valsR2 [] = { r2_0 , r2_1 , r2_2 , r2_3 , r2_4 ,

r2_5 , r2_6 , r2_7 , r2_8 , r2_9 };

float valsC2 [] = { i2_0 , i2_1 , i2_2 , i2_3 , i2_4 ,

i2_5 , i2_6 , i2_7 , i2_8 , i2_9 };

_Fcomplex *R1;

R1 = new _Fcomplex[ANTS*ANTS];

_Fcomplex *R2;

R2 = new _Fcomplex[ANTS*ANTS];

vec2autocorr(valsR1 , valsC1 , R1);

vec2autocorr(valsR2 , valsC2 , R2);

MatrixXcf *eigvecs1 , *eigvecs2;

MatrixXf *eigvals1 , *eigvals2;

eigvecs1 = new MatrixXcf;

eigvecs2 = new MatrixXcf;

eigvals1 = new MatrixXf;

eigvals2 = new MatrixXf;

autocorr2eig(R1, eigvecs1 , eigvals1);

autocorr2eig(R2, eigvecs2 , eigvals2);

MatrixXcf *subspace1 , *subspace2;

subspace1 = new MatrixXcf;

subspace2 = new MatrixXcf;

subspaceMat(eigvals1 , eigvecs1 , subspace1);

subspaceMat(eigvals2 , eigvecs2 , subspace2);

MatrixXf *S_music1 , *thetas1 , *phis1;

S_music1 = new MatrixXf; // Music Spectrum values

thetas1 = new MatrixXf; // Theta grid

phis1 = new MatrixXf; // Phi grid

MatrixXf *S_music2 , *thetas2 , *phis2;

S_music2 = new MatrixXf; // Music Spectrum values

thetas2 = new MatrixXf; // Theta grid

phis2 = new MatrixXf; // Phi grid

musicSpectrum(subspace1 , a1, S_music1 , thetas1 , phis1);

musicSpectrum(subspace2 , a2, S_music2 , thetas2 , phis2);

float *thLocs1 , *phLocs1;

thLocs1 = new float[TAGS]; // Theta values corresponding to peaks

phLocs1 = new float[TAGS]; // Phi values corresponding to peaks

findPeaks(S_music1 , thetas1 , phis1 , thLocs1 , phLocs1);
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float *thLocs2 , *phLocs2;

thLocs2 = new float[TAGS]; // Theta values corresponding to peaks

phLocs2 = new float[TAGS]; // Phi values corresponding to peaks

findPeaks(S_music2 , thetas2 , phis2 , thLocs2 , phLocs2);

*angles1 = *thLocs1;

*( angles1 + 1) = *phLocs1;

*angles2 = *thLocs2;

*( angles2 + 1) = *phLocs2;

float *dist;

dist = new float;

Vector3f *midpoint;

midpoint = new Vector3f;

Vector3f *locations;

locations = new Vector3f[TAGS];

bestLocal(a1, thLocs1 , phLocs1 , a2 , thLocs2 , phLocs2 , locations);

*xyz = (* locations)[0];

*(xyz + 1) = (* locations)[1];

*(xyz + 2) = (* locations)[2];

}

13.2.2 TestEigenDLL.h – All Auxiliary Functions

#define TESTEIGENDLL_API __declspec(dllexport)

#define _USE_MATH_DEFINES

#include <complex.h>

#include "../ Eigen/Dense"

#include "../ Eigen/Geometry"

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <iostream >

#include <utility >

#include <cfloat >

#include <vector >

using namespace std;

using Eigen:: MatrixXcf;

using Eigen:: VectorXcf;

using Eigen:: VectorXd;

using Eigen:: MatrixXf;

using Eigen:: Vector3f;

const int ANTS = 4;

const int TAGS = 1;

const int GRID_RES = 200;

const int gg = GRID_RES * GRID_RES;

const float FREQ = 915000000; // Tag freq

const float DOL = 0.5; // Distance over lambda

const float LAMBDA = 300000000 / FREQ; // Wavelength

const float D = DOL * LAMBDA; // Distance

const float oneNorm = 5.0* M_PI / 180.0;

extern "C" {
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TESTEIGENDLL_API void R2LOC(float r1_0 , float r1_1 , float r1_2 , float r1_3 ,

float r1_4 ,

float r1_5 , float r1_6 , float r1_7 , float r1_8 , float r1_9 ,

float r2_0 , float r2_1 , float r2_2 , float r2_3 , float r2_4 ,

float r2_5 , float r2_6 , float r2_7 , float r2_8 , float r2_9 ,

float i1_0 , float i1_1 , float i1_2 , float i1_3 , float i1_4 ,

float i1_5 , float i1_6 , float i1_7 , float i1_8 , float i1_9 ,

float i2_0 , float i2_1 , float i2_2 , float i2_3 , float i2_4 ,

float i2_5 , float i2_6 , float i2_7 , float i2_8 , float i2_9 ,

float *angles1 , float *angles2 , float *xyz);

}

bool comparator(pair <float , int > p1, pair <float , int > p2) {

return (p1.first > p2.first);

}

void vec2autocorr(float valsReal[], float valsComp[], _Fcomplex *R) {

/* Returns autocorrelation matrix formed from the values in vals.

*

* Inputs:

* valsReal: Array of the real portion of values containing the upper

traingular portion

* [r11 , r12 , r13 , r22 , r23 , r33] are the indexes for the 3x3 R case.

* valsComp: Array of the complex portion of values containing the upper

traingular portion

* ants : Number of antennas (aka size of square matrix)

*

* Outputs:

* *R : Pointer to a 2D array of complex values

*/

_Fcomplex temp;

for (int i = 0; i < ANTS; i++) {

for (int j = 0; j < ANTS; j++) {

if (j >= i) { // Upper triangular

int ind = i * ANTS - i * (i + 1) / 2 + j;

temp = { valsReal[ind],valsComp[ind] }; // Form the complex number. I

is imag unit

*(R + ANTS * i + j) = temp;

}

else { // Lower triangular

int ind = j * ANTS - j * (j + 1) / 2 + i;

temp = { valsReal[ind],-valsComp[ind] }; // Form the complex

number

*(R + ANTS * i + j) = temp;

}

}

}

}

void autocorr2eig(_Fcomplex *R, MatrixXcf *eigmat , MatrixXf *eigvals) {

/* Takes an autocorrelation matrix and returns the eigenvectors and eigenvalues .

Inputs:

*R : Pointer to R matrix values

*eigmat : Pointer to eigenvectors stored in matrix

*eigvals: Pointer to eigenvalues sotred in matrix (row vector)

*/

MatrixXcf Rmat(ANTS , ANTS);
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// Place R values into appropriate data type

for (int i = 0; i < ANTS*ANTS; i++) {

int row = i / ANTS;

int col = i % ANTS;

Rmat(row , col) = *(R + i);

}

Eigen:: SelfAdjointEigenSolver <MatrixXcf > es(Rmat);

*eigvals = es.eigenvalues ();

*eigmat = es.eigenvectors ();

// std :: cout << "Eigen Values: \n" << *eigvals << std :: endl;

// std :: cout << "\ nEigen Vectors: \n" << *eigmat << std :: endl;

// std :: cout << "\ nLambda*v: \n" << (* eigvals)(0) *((* eigmat).col (0)) << std ::

endl;

// std :: cout << "\nR*eig: \n" << (Rmat)*((* eigmat).col (0)) << std :: endl;

}

void centroid(float *points , int ants , float *center) {

/* Finds the centroid of the points.

*

* Inputs:

* *points : Pointer to a 2D array of size [ants ][3] where each row contains (x

,y,z) coordinate

* ants : Number of antennas to find the centroid of

*

* Outputs:

* *center : Pointer to a 1D array of size [3] containing (x,y,z) coordinates

of centroid

*/

*center = 0.0;

*( center + 1) = 0.0;

*( center + 2) = 0.0;

// cout << "AAAA: " << &points << endl;

for (int i = 0; i < ants; i++) {

for (int j = 0; j < 3; j++) {

*( center + j) += *( points + 3 * i + j) / (double)ants;

}

}

// printf ("X: %f, Y: %f, Z: %f\n", *( center), *( center +1) , *( center +2));

}

void subspaceMat(MatrixXf *eigvals , MatrixXcf *eigvecs , MatrixXcf *subspace) {

/* Takes eigenvectors and eigenvalues and returns the appropriate Subspace matrix

.

Inputs:

*eigvals : Pointer to eigenvalues

*eigvecs : Pointer to eigenvector matrix

Ouputs:

*subspace : Pointer to noise subspace matrix

*/

pair <float , int > lambs[ANTS];

for (int i = 0; i < ANTS; i++) {

lambs[i].first = (* eigvals)(i);

lambs[i]. second = i;

}
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int n = sizeof(lambs) / sizeof(lambs [0]);

std::sort(lambs , lambs + n, comparator);

/*

for(int i=0; i<ants; i++){

cout << "Lambs at " << i << ": First " << lambs[i]. first

<< ", Second " << lambs[i]. second << endl;

}

*/

MatrixXcf subs(ANTS , ANTS - TAGS);

for (int i = 0; i < ANTS - TAGS; i++) {

int ind = lambs[i + TAGS]. second;

subs.col(i) = (* eigvecs).col(ind);

}

(* subspace) = subs * subs.adjoint ();

// std :: cout << "\ nSubs :\n" << *subspace << std :: endl;

}

void musicSpectrum(MatrixXcf *subspace , float *antPos , MatrixXf *S_music , MatrixXf *

thetas , MatrixXf *phis) {

/* Calculates the music spectrum based on the noise subspace matrix

Inputs:

*subspace : Noise subspace matrix

*antPos : [ants ][3] pointer to antenna coordinates

Outputs:

*S_music : [gridRes ][ girdRes] matrix containing values of the spectrum

theta in first dim , phi in second dim

*thetas : [gridRes ][ gridRes] matrix containing theta values

*phis : [gridRes ][ gridRes] matrix containing phis values

*/

MatrixXcf music_spec(GRID_RES , GRID_RES); //To be filled in and then sent back

float *center;

center = new float [3];

// cout << "Antpos: " << &antPos << endl;

// printf (" Center %f, %f, %f\n", *center , *( center +1) , *( center +2));

centroid(antPos , ANTS , center);

// printf (" Center %f, %f, %f\n", *center , *( center +1) , *( center +2));

MatrixXf centered(3, ANTS); // Shifted antPos by center

for (int i = 0; i < ANTS; i++) {

for (int j = 0; j < 3; j++) {

centered(j, i) = *( antPos + 3 * i + j) - *( center + j);

}

}

// cout << "Ant_locs\n" << centered << endl;

MatrixXf dir_vec(1, 3); // Directional Vector

MatrixXcf steerRow(1, ANTS); // Steering vector
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float th , ph;

MatrixXf theta(GRID_RES , GRID_RES), phi(GRID_RES , GRID_RES);

float kwav = 2.0* M_PI / LAMBDA;

MatrixXcf temp1(1, 1);

for (int i = 0; i < GRID_RES; i++) {

for (int j = 0; j < GRID_RES; j++) {

th = -M_PI + i * (2 * M_PI) / (float)GRID_RES;

ph = j * (M_PI) / (float)(GRID_RES * 2);

theta(i, j) = th;

phi(i, j) = ph;

dir_vec(0, 0) = sin(ph)*cos(th); //ak x component

dir_vec(0, 1) = sin(ph)*sin(th); //ak y component

dir_vec(0, 2) = cos(ph); //ak z component

MatrixXcf Ifm(1,1);

_Fcomplex If = { 0,1 };

Ifm(0, 0) = If;

_Fcomplex neg1 = { -1,0 };

steerRow = -((float)kwav)*Ifm*dir_vec*centered;

for (int k = 0; k < ANTS; k++) {

steerRow(0, k) = exp(steerRow(0, k)) / (( float)(sqrt(ANTS)));

}

temp1(0, 0) = (( steerRow.conjugate ())*(* subspace)*( steerRow.transpose ())

)(0, 0);

music_spec(i, j) = (float)1.0 / temp1(0, 0);

// cout << "th: " << th << ", ph: " << ph << ", vect: " << steerRow <<

endl;

}

}

*thetas = theta;

*phis = phi;

MatrixXf temp(GRID_RES , GRID_RES);

// Take abs of music spec and print it

for (int i = 0; i < GRID_RES; i++) {

for (int j = 0; j < GRID_RES; j++) {

temp(i, j) = (( float)20)*log10(abs(music_spec(i, j)));

// temp(i,j) = abs( music_spec (i,j));

// printf ("%f\n",temp(i,j));

}

}

*S_music = temp;

}

void findPeaks(MatrixXf *S_music , MatrixXf *th, MatrixXf *ph , float *thetas ,

float *phis) {

/* Find the theta and phi values of the peaks of the Music Spectrum.

*

* Inputs:

* *S_music: Music spectrum

* *th : Theta value grid

* *ph : Phi value grid

*

94



* Outputs:

* *thetas : theta values of the peaks

* *phis : phi values of the peals

*/

if (TAGS == 1) {

float thMax;

float phMax;

float maxPeak = FLT_MIN;

for (int i = 0; i < GRID_RES; i++) {

for (int j = 0; j < GRID_RES; j++) {

if ((* S_music)(i, j) > maxPeak) {

thMax = (*th)(i, j);

phMax = (*ph)(i, j);

maxPeak = (* S_music)(i, j);

}

}

}

*thetas = thMax;

*phis = phMax;

// cout << "Theta: " << thMax << ", Phi: " << phMax << endl;

}

else {

bool isPeak = false;

int im, ip, jm, jp, k;

im = 0; // Previous Row

ip = 0; // Next Row

jm = 0; // Previous Column

jp = 0; // Next Column

k = 0;

float peaks[gg];

float thTemp[gg];

float phTemp[gg];

for (int i = 0; i < GRID_RES; i++) { // Theta loop (rows constant)

// Handle edge cases for rows

if (i == 0) {

im = GRID_RES - 1; // Wrap around on the theta

ip = 1;

}

else if (i == (GRID_RES - 1)) {

im = i - 1;

ip = 0; // Wrap around on the theta

}

else {

im = i - 1;

ip = i + 1;

}

for (int j = 0; j < GRID_RES; j++) { // Phi loop (cols constant)

// Handle edge cases for rows

if (j == 0) {

jm = 0;

jp = 1;

}
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else if (j == (GRID_RES - 1)) {

jm = j - 1;

jp = GRID_RES - 1;

}

else {

jm = j - 1;

jp = j + 1;

}

// Check if current value is larger or equal to neighbors

isPeak = ((* S_music)(im , j) <= (* S_music)(i, j))

& ((* S_music)(i, jm) <= (* S_music)(i, j))

& ((* S_music)(ip , j) <= (* S_music)(i, j))

& ((* S_music)(i, jp) <= (* S_music)(i, j));

// Store peak value and corresponding theta and phi

bool isok = true;

float differ;

if (isPeak) {

for (int n = 0; n < k; n++) {

// float tempth = thTemp[n];

// if(thTemp[n] > 0){

// tempth = thTemp[n] - M_PI;

// }

// else{

// tempth = thTemp[n] + M_PI;

// }

differ = abs(thTemp[n] - (*th)(i, j)) + abs(phTemp[n] - (*ph

)(i, j));

// cout << "Differ = " << differ << ", k = " << k <<

endl;

isok = isok && (differ > oneNorm);

}

if ((*th)(i, j) < (-M_PI + oneNorm)) {

for (int n = 0; n < k; n++) {

differ = abs(thTemp[n] + (float)(2.0* M_PI) - (*th)(i, j)

+ abs(phTemp[n] - (*ph)(i, j)));

isok = isok && (differ > oneNorm);

}

}

else if ((*th)(i, j) < (M_PI - oneNorm)) {

for (int n = 0; n < k; n++) {

differ = abs(thTemp[n] - (float)(2.0* M_PI) - (*th)(i, j)

+ abs(phTemp[n] - (*ph)(i, j)));

isok = isok && (differ > oneNorm);

}

}

if (isok) {

// cout << "End my misery !\n";

peaks[k] = (* S_music)(i, j);

thTemp[k] = (*th)(i, j);

phTemp[k] = (*ph)(i, j);

// if(thTemp[k] > 0){

// thTemp[k] = thTemp[k] - M_PI;

// }
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// else{

// thTemp[k] = thTemp[k] + M_PI;

// }

k++;

}

}

// cout << "Peak " << k <<" found! Val: " << peaks[k]

<< ", th: " << thTemp[k] << ", ph: " << phTemp[k] << endl;

}

}

// Sort the peaks so that highest peak is first (Stronget Signal)

pair <float , int > locs[gg];

for (int i = 0; i < k; i++) {

locs[i].first = peaks[i];

locs[i]. second = i;

}

int n = sizeof(locs) / sizeof(locs [0]);

std::sort(locs , locs + n, comparator);

float allOrdTh[gg], allOrdPh[gg];

for (int i = 0; i < k; i++) {

allOrdTh[i] = thTemp[locs[i]. second ];

allOrdPh[i] = phTemp[locs[i]. second ];

}

// The above two for loops organize all the peaks and corresponding in angles

in

// order of highest peaks to lowest peaks.

/*

for(int i=0; i<k; i++){

cout << "value: " << locs[i]. first << " , Position: " << locs[i]. second

<< endl;

}

*/

// Take the n largest peaks where n is the number of tags;

float ordTh[TAGS]; // Ordered thetas

float ordPh[TAGS]; // Ordered phis

for (int i = 0; i < TAGS; i++) {

// cout << "Location index: " << locs[i]. second << endl;

// cout <<"\t TH: " << thTemp[locs[i]. second ]*(180/ M_PI) <<

endl;

// cout <<"\t PH: " << phTemp[locs[i]. second ]*(180/ M_PI) <<

endl;

ordTh[i] = thTemp[locs[i]. second ];

ordPh[i] = phTemp[locs[i]. second ];

}

*thetas = ordTh [0];

*phis = ordPh [0];

/*

for(int i=0; i<tags; i++){
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cout << "ThPh" << i << ": " << ordTh[i] << ", " << ordPh[i] << endl;

}

*/

}

}

void ang2loc(float *antloc1 , float th1 , float ph1 , float *antloc2 , float th2 ,

float ph2 , float *dist , Vector3f *midpoint) {

/* Reutrns the minimum distance between the two rays pertruding from the center

of the antenna arrays specified by the angles.

Inputs:

*antloc : [ANTS ][3] Contains the coordiantes of an antenna array

th : theta value corresponding to array

ph : phi value corresponding to array

Outputs:

*dist : Minimum distance between the two rays

*midpoint : Midpoint between the two lines

*/

float *c1 , *c2;

c1 = new float [3]; // Center of array 1

c2 = new float [3]; // Center of array 2

centroid(antloc1 , ANTS , c1);

centroid(antloc2 , ANTS , c2);

// Store centers in vector objects

Vector3f center1 , center2;

for (int i = 0; i < 3; i++) {

center1(i) = *(c1 + i);

center2(i) = *(c2 + i);

}

// cout << "\ nAngles1: Th = " << th1 << ", Ph = " << ph1 << endl;

// cout << "\ nAngles2: Th = " << th2 << ", Ph = " << ph2 << endl;

Vector3f dir1 , dir2; // Direction of ray

dir1 (0) = cos(th1); //x component

dir1 (1) = sin(th1); //y component

dir1 (2) = cos(ph1) / sin(ph1); //z component

dir2 (0) = cos(th2); //x component

dir2 (1) = sin(th2); //y component

dir2 (2) = cos(ph2) / sin(ph2); //z component

// cout << "\ nDirection 1:\n" << dir1 << endl;

// cout << "\ nDirection 2:\n" << dir2 << endl;

Vector3f nor1 , nor2 , distNor; // Normal vectors

nor1 = dir1.cross(dir2.cross(dir1)); // For center calc

nor2 = dir2.cross(dir1.cross(dir2)); // For center calc

distNor = (dir1.cross(dir2)).normalized (); // For distance calc

// cout << "\ nNormal 1:\n" << nor1 << endl;

// cout << "\ nNormal 2:\n" << nor2 << endl;

// cout << "\ nDistance Normal :\n" << distNor << endl;

float distance = abs(distNor.dot(center1 - center2)); // Distance between 2
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skew lines

*dist = distance;

Vector3f point1 , point2; // Points on line1 and line2 closest to line 2 and

line 1 respectively

point1 = center1 + (( center2 - center1).dot(nor2) / dir1.dot(nor2))*dir1;

point2 = center2 + (( center1 - center2).dot(nor1) / dir2.dot(nor1))*dir2;

// cout << "\ nPoint 1:\n" << point1 << endl;

// cout << "\ nPoint 2:\n" << point2 << endl;

Vector3f mid;

mid = (point1 + point2) / (float)(2);

*midpoint = mid;

}

void bestLocal(float *antloc1 , float *thLocs1 , float *phLocs1 , float *antloc2 ,

float *thLocs2 , float *phLocs2 , Vector3f *locations) {

// Takes the thetas and phis from each array and finds the best matching to

// localize the tags.

vector <int > avail; // Unpaired AOA indices

pair <int , int > matches[TAGS];

for (int i = 0; i < TAGS; i++) {

matches[i].first = i;

avail.push_back(i);

}

float minDist = FLT_MAX; // Smallest distance found so far

float *dist; // Current distance found

dist = new float;

Vector3f *midpoint; // Current localized point

midpoint = new Vector3f;

Vector3f *loc; // Best localized point

loc = new Vector3f;

int bestInd; // Index of best match

Vector3f locals[TAGS]; // Array of tags locations

for (int i = 0; i < TAGS; i++) {

for (int j = 0; j < TAGS - i; j++) {

ang2loc(antloc1 , *( thLocs1 + i), *( phLocs1 + i), antloc2 ,

*( thLocs2 + avail.at(j)), *( phLocs2 + avail.at(j)), dist , midpoint);

if (*dist < minDist) {

minDist = *dist;

bestInd = j;

loc = midpoint;

// cout << "MIDPOINT " << *midpoint << endl;

};

}

matches[i]. second = avail.at(bestInd);

avail.erase(avail.begin() + bestInd);

locals[i] = *loc;

}

*locations = locals [0];
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for (int i = 0; i < TAGS; i++) {

cout << "Matches: " << matches[i].first << " and "

<< matches[i]. second << endl;

}

}
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